About Journal

Advanced Materials Letters is a leading Diamond Open Access (DOA) international scientific journal published by a non-profit organisation, International Association of Advanced Materials, IAAM. Launched in June 2010 as the official journal of the International Association of Advanced Materials, IAAM, the journal publishes high-quality peer-reviewed articles on materials science, engineering, and technology. The subjects covered span through a wide range that includes materials of chemistry, physics, biology, engineering, and technology.    Advanced Materials Letters is...
Read More ...

The Emerging Global Trends in Hydrogen Energy Research for Achieving the Net Zero Goals

Ashutosh Tiwari

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-5
DOI: 10.5185/aml.2021.15697

As the world is entering a phase of realization to mend ways to build a climate-neutral, healthy, and sustainable environment all around and many prominent steps are taken to achieve the goal of net-zero. The advancement of materials used for energy and production purposes is being transformed and developed in ways that will ensure sustainable development without harming of the ecology. One such strong action brought is the use of hydrogen energy towards climate neutrality. Hydrogen is now considered a very important product for aiming at zero waste as it can make it possible to remove fossil fuels usage and will play a very important role in the energy transformation of the world to sustainable development goals. It is very important to reduce the emission of carbon from industries and vehicles and at the same time give longer energy storage. As the European Deal and the United Nations move forward for attaining net-zero goals with the introduction of clean hydrogen energy and its uses have been the showstopper for various conversions in various sectors which will ensure reaching global sustainability. 

Utilization of Advanced Technologies for in-situ Remediation of Polluted Soil to avoid Ecological Risks: A Review

Aparna Pandey; Pratibha Singh; Divya Gupta; Abreeq Fatima; Sheo Mohan Prasad

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-11
DOI: 10.5185/aml.2021.15698

Soil pollution cannot be directly assessed or visually perceived generally and has become a hidden danger. It is mainly contributed by contamination from chemicals, heavy metals, pesticides, polycyclic aromatic hydrocarbons, and persistent organic pollutants. Soil pollutants are antagonistic to diversified life forms on earth ranging from soil microbes, plants, and mankind to water inhabitants and aerial lives, food security, agricultural productivity thereby exerting detrimental effects and so need immediate attention. The remediation of contaminated soil is necessary for sustainable development and continual existence of life forms on the planet. Ecological remediation depends chiefly on utilizing different innovations like adsorption, assimilation, compound responses, photo-catalysis, and filtration for the expulsion of contaminants from natural media like soil. This review elucidates various soil pollutants from natural to manmade sources and its affect on the environmental components. It further aims to look at recent advances in various remediation technologies for removing contaminants from soil. Besides the traditional methods of remediation, techniques involving biological methods, biotechnological approach and nanotechnology have been focused. Some possible opportunities and challenges of varying soil remediation strategies are discussed. It would suggest new perspectives and future challenges in soil remediation.

Design and Numerical Simulation using Vibration Analysis for the Detection and Reduction of Failures of the Gear Pair of the Differential System of a Powertrain

Cristhoper E. Jaimes Martínez; J. Flores Méndez; Gustavo M. Minquiz; Pablo Gutiérrez Cruz; Fernando Medina Pérez; A. C. Piñón Reyes; Janette Castro Hernández; René Pérez Pérez

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-5
DOI: 10.5185/aml.2021.15699

In this work, a numerical methodology is implemented applying the computational finite element method for a pair pinion-crown of bevel gears in spiral of the differential system of a compact Sport Utility Vehicle (SUV), with the objective of establishing a criterion of the results to characterize the failure of the gear pair during its operation. To do this, from a CAD model obtained by 3D scanning, the numerical results of the structural case are compared by correlating the transient, fatigue, modal and harmonic studies between a pair of gears without damage and another pair with a damaged (chipped) tooth on the pinion. It is observed that from the harmonic response of stress and vibration, a criterion can be established to differentiate the new pair of gears from the damaged pair, the latter presenting a frequency response pattern with high values with respect to the first. The above may be a reference option for detecting the failure of spiral bevel gear pairs used in automobile differential system.

Theoretical Prediction for Band Gap of Semiconducting Nanoparticles

Sachin .; Brijesh Kumar Pandey; Ratan Lal Jaiswal

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-4
DOI: 10.5185/aml.2021.15700

In the present study, a well-established relation between the band gap of low dimensional solid and its cohesive energy has been used to calculate the band gap variation at nano level. The different thermodynamical models proposed for the cohesive energy do not consider the unsaturated bonds of surface atoms, the shape of the nanoparticle and the packing density of the corresponding crystal simultaneously. Extending the bond energy model, a simple theoretical model for the cohesive energy has been proposed which incorporate all the above-mentioned properties simultaneously and hence getting a more comprehensive relation between the band gap and the characteristics of the nanoparticle. We have computed bandgap of compound semiconducting nanosolids ZnE and CdE, (E=S, Se, Te) in different shapes. It is found that band gap expands as the particle size decreases and the shape deviates more from spherical one. A close agreement between our calculated results and the available experimental data validates the present theoretical model. The present expression of Band gap of Nanosolids is potentially applicable for those materials whose experimental data are not available.

Synthesis, Characterization and Application of MCM-41@LDH as a New Support for Lysozyme: Central Composite Design to Evaluate Experimental Variables

Forough Karami; Ardeshir Shokrollahi; Razie Razavizade

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-8
DOI: 10.5185/aml.2021.15701

A precipitation method was used to synthesize MCM-41. Then, the obtained mesoporous was modified using layered double hydroxide (MCM-41@LDH). The novel mesoporous MCM-41@LDH was successfully applied for adsorption of lysozyme (LYS) at different conditions such as adsorbent amount, pH of solution, stirrer time, and concentration of protein which were designed using central composite design (CCD). Furthermore, the chief characteristics of new adsorbent were identified using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) analyses. The maximum adsorption of LYS, predicted by CCD was 0.025 g of support, LYS concentration of 300 mg L-1, pH 7.50, and stirrer time of 55 min. The isotherm, kinetic, and thermodynamic equations of LYS on MCM-41@LDH were surveyed. It was established that Freundlich isotherm (R2=0.997) and second-order kinetic (R2=0.997) were the best data. Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) values were obtained as -17334.5 kJ/mol K (at 298.15 K), -17346.3, and -0.04 kJ/mol, respectively. Based on the achieved results including high adsorption intensity of support (Freundlich constant, n=2.46) and the negative value of ΔG˚ (spontaneity of the adsorption process), it suggests that MCM-41@LDH should be a favorable candidate for LYS-chromatography and separation applications.

Silver Nanoparticles as Nanofungicide and Plant Growth Promoter: Evidences from Morphological and Chlorophyll ‘a’ Fluorescence Analysis

Manisha Bawskar; Sunita Bansod; Dnyaneshwar Rathod; Carolina Alves dos Santos; Pramod Ingle; Mahendra Rai; Aniket Gade

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-7
DOI: 10.5185/aml.2021.15702

Fungal infections are major issue in agricultural crop plants that affects the growth of plant causing huge economic losses. Silver nanoparticles (AgNPs) have shown antimicrobial effects. Here, we report the potential application of phytostabilized AgNPs as a novel nanofungicide and growth promoter in Vigna radiata (L.) R. Wilczek (Mung). The aqueous extract of Azadirachta indica (Neem) challenged with AgNO3 (1mM) develops a brown colour, indicating AgNPs synthesis. Detection of AgNPs was monitored by UV-Vis spectroscopy, which showed peak at 415 nm. Further confirmation was done by Fourier Transform Infra-Red Spectroscopy which illustrates functional groups present in the capping proteins. Nanoparticle Tracking Analysis, and Transmission Electron Microscopy confirmed the synthesis of spherical, polydispersed nanoparticles in the range of 15-35 nm. AgNPs proved to exhibit antifungal potential in suppression of fungal plant pathogens. Seed germination percentage was much higher for the AgNPs treated seeds as compared to control. Handy-PEA analyzer (measures chl-a fluorescence) indicating seedlings inoculated with AgNPs were grown as the healthy plant with greater vitality, compared to control plants. Phytostabilized AgNPs were found to be biocompatible and have a promising attribute in developing a potent nanofungicide to enhance productivity rate and prevent fungal infections in crops with no potential toxicity.

Novel Poly(pyrrole-co-3-acetyl pyrrole)-WO3 nanocomposites modified gold electrode as electrocatalytic oxidation and reduction of H2O2

Nitin Dighore; Priya Dahare; Suresh Gaikwad; Anjali Rajbhoj

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-6
DOI: 10.5185/aml.2021.15703

The fabrication of an electrochemical sensor based on novel poly(pyrrole-co-3acetyl pyrrole)-WO3 nanocomposites modified gold electrode (PPAP-WO3-AuE) and its electrocatalytic oxidation and reduction of hydrogen peroxide is described here. The PPAP-WO3 nanocomposites were synthesized by chemical method and characterized by different techniques. The WO3 nanoparticles incorporated with PPAP were confirmed by x-ray diffraction pattern, scanning electron microscopy and transmission electron microscope micrograph. The electrochemical behaviour of PPAP-WO3-AuE towards the electro catalytic oxidation and reduction of hydrogen peroxide was investigated by cyclic voltammetry, differential pulse voltammetry and square wave voltammetry. The observed DPVs and SWVs response depend linearly on concentration of hydrogen peroxide in the range of 1-10 mM and with limit of detection (LOD) is 1×10-4 M. The correlation coefficients were found as 0.991, 0.930 and sensitivity observed was 47.64 mA/mM.cm2 and 8.31mA/mM.cm2. These results indicate the PPAP-WO3-AuE exhibited good platform and could be used for electrochemical determination of hydrogen peroxide.

Morphological Characterization of Porous Anodic Alumina Membranes Prepared in Sulphuric, Oxalic, Chromic and Phosphoric Acids

P. Ramana Reddy; Ajith K.M; N.K. Udayashankar

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-5
DOI: 10.5185/aml.2021.15704

Porous Anodic Alumina membranes (PAAM) have a significant role in nanoscale devices due to their easily tunable structural aspects and variety of applications in nanotechnology. The variable process parameters in the synthesis of PAAM were anodization potential, temperature, duration and nature of electrolyte concentration. Pores of different sizes and geometry were obtained by varying these anodization parameters. In the present work, PAAM were prepared in 0.3 M of sulphuric, oxalic, chromic and phosphoric acids as electrolyte and with anodization potentials (20, 40, 50 and 90 V) at a temperature of 8 °C. Field-emission Scanning Electron Microscopy investigations confirm the pore formation in PAAM layers. Pore ordering was calculated using the Fast Fourier transform (FFT) of top view SEM micrographs. Pore arrangement analysis of PAAM was studied using Image-J and WSxM software. Morphological features of PAAM such as pore diameter, interpore distance, porosity and pore density were calculated in all electrolytes. Results show that, PAAM formed in oxalic acid having high regularity ratio and circularity compared with other cases.

Plant Mediated Synthesis Of Gold Nanoparticles Using Fruit Extracts Of Ananas Comosus (L.) (Pineapple) And Evaluation Of Biological Activities

Nagaraj Basavegowda; Agnieszka Sobczak-Kupiec; Dagmara Malina; Yathirajan HS; Keerthi V R; Chandrashekar N; Salman Dinkar; Liny P

Advanced Materials Letters, 2013, Volume 4, Issue 5, Pages 332-337
DOI: 10.5185/amlett.2012.9423

AnchorPlant mediated synthesis of metallic nanoparticles is an increasing commercial demand due to the wide applicability in various areas such as electronics, catalysis, chemistry, energy, cosmetics and medicine. In the present investigation, synthesis of gold nanoparticles is done by using fruit extracts of Ananas comosus (L.). Nanoparticles were characterized by using UV visible absorption spectra. Their morphology, elemental composition and crystalline phase were determined by scanning electron microscopy, energy dispersive X-ray spectroscopy and selected area electron diffraction. FT-IR analysis was used to confirm the presence of gold nanoparticles in the extracts. The synthesized gold nanoparticles were generally found to be effective as antimicrobial agents against some important human pathogens like E.coli and Streptobacillus sp. which are affecting and cause diseases like food poisoning and rat-bite fever to human beings respectively.

Carboxymethyl Chitosan And Its Applications

V.K Mourya; Nazma N. Inamdara;Ashutosh Tiwari

Advanced Materials Letters, 2010, Volume 1, Issue 1, Pages 11-33
DOI: 10.5185/amlett.2010.3108

Deacetylation of chitin affords chitosan, a polymer, widely studied for its pharmaceutical and nonpharmaceutical applications. The hurdle in comprehending these applications is its limited solubility. Carboxymethylation of chitosan helps to surmount this hurdle with its improved solubility in water. Though there is ample of research related to carboxymethyl chitosan (CMC) the focused review of the topic is unavailable. Hence an attempt is made in this review to cover the recent findings pertaining to synthesis, characterization of CMC and its applications especially in pharmaceutical field. CMC has been synthesized by ways as direct alkylation, reductive alkylation, Michael addition and characterized by FTIR, NMR spectroscopy, and DSC, titrimetry, viscometry, gel permeation chromatography, X-ray diffraction and capillary zone electrophoresis. The carboxymethyl group can be present at O or N or both the atoms of chitosan molecule. The CMC possess modulated physical and biological properties as chelating, sorption, moisture retention, cell functioning antioxidant, antibacterial, antiapoptotic etc. CMC is used in sustained or controlled release drug delivery, pH responsive drug delivery, DNA delivery as permeation enhancer etc. CMC can be further modified with alkylation, acylation, and grafting. Carboxyalkylation of chitosan yield carboxyethyl, carboxybutyl chitosans. These analogues of CMC may be helpful in substantiating the applications of chitosan.

Recent Applications of Magnesium Oxide (MgO) Nanoparticles in various domains

Manuel Fernandes; Kshitij RB Singh; Tanushri Sarkar; Pooja Singh; Ravindra Pratap Singh

Advanced Materials Letters, 2020, Volume 11, Issue 8, Pages 1-10
DOI: 10.5185/amlett.2020.081543

Magnesium oxide nanoparticles have emerged as a potential candidate for meeting ends of various problems due to its unique properties such as biodegradability, non-toxicity, inhibition of biofilm growth and degradation of harmful dyes such as methyl violet and many more. Along with its easy synthesis by methods such as sol-gel technique, precipitation method, and green synthesis, it is widely applicable for toxic waste remediation, antibacterial materials, removal of industrial pollutants and also used in anti-arthritic and anti-cancer activities. Prior reviews have laid focus on singular domains whereas our review clubs three major domains i.e., clinical, agricultural and environmental that are involved in the day to day life of plants as well as animals. Besides the above information, properties, synthesis, nanotoxicity and future perspectives of magnesium oxide nanoparticles have also been elaborated in this review.

The Emerging Global Trends in Hydrogen Energy Research for Achieving the Net Zero Goals

Ashutosh Tiwari

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-5
DOI: 10.5185/aml.2021.15697

As the world is entering a phase of realization to mend ways to build a climate-neutral, healthy, and sustainable environment all around and many prominent steps are taken to achieve the goal of net-zero. The advancement of materials used for energy and production purposes is being transformed and developed in ways that will ensure sustainable development without harming of the ecology. One such strong action brought is the use of hydrogen energy towards climate neutrality. Hydrogen is now considered a very important product for aiming at zero waste as it can make it possible to remove fossil fuels usage and will play a very important role in the energy transformation of the world to sustainable development goals. It is very important to reduce the emission of carbon from industries and vehicles and at the same time give longer energy storage. As the European Deal and the United Nations move forward for attaining net-zero goals with the introduction of clean hydrogen energy and its uses have been the showstopper for various conversions in various sectors which will ensure reaching global sustainability. 

Transforming Energy Technologies for Climate Neutrality Goals

Ashutosh Tiwari

Advanced Materials Letters, 2021, Volume 12, Issue 9, Pages -
DOI: 10.5185/amlett.2021.091658

The world is facing major problems related to global warming, climate change, anthropogenic greenhouse gas emissions, and environmental degradation. They implicate a major worry to take immediate measures to rectify the ways and methods to build a clean world for the future generation to live blissfully. The technological revolution paves a way to combat the current terrible situation using numerous sustainable measures by the advancement of materials. The clean energy transition is mostly adopting in the transport and mobility sectors for reducing the emissions of vehicles. The present scenario of the global climate sets urgent needs to demonstrate country-wise a long-term policy for clean, renewable, and net-zero waste power generation in line with climate neutrality goals.

Solid State Thermochromic Materials

Pragna Kiria; Geoff Hyett; Russell Binions

Advanced Materials Letters, 2010, Volume 1, Issue 2, Pages 86-105
DOI: 10.5185/amlett.2010.8147

Solid-state thermochromic materials undergo semiconductor to metal transitions at a ‘critical temperature’, Tc. This review begins by describing the phenomenon of thermochromism, whereby the optical properties of a material change reversibly as a result of a change in temperature. The various different types of thermochromism will be introduced with a focus on the thermochromism exhibited by solid-state materials. The fundamental chemical principles that describe the electronic structure and properties of solids, and the chronological developments in the theory behind the thermochromic transitions (such as, the effects of electron-electron interactions and structural phase changes due to lattice distortions) that led to the discovery of the semiconductor-to-metal transition, are presented. An extensive discussion of vanadium and titanium oxides is presented with a particular focus on vanadium (IV) oxide since its transition temperature is closest to room temperature. Observations and current understanding of the nature of the semiconductor-to-metal transition exhibited by these materials is detailed. The possibility of fine-tuning the transition temperature by introducing various dopants into the vanadium (IV) oxide lattice is examined and the effects of dopant charge and size is examined. Solid-state thermochromic materials may be exploited in areas such as microelectronics, data storage, or intelligent architectural glazing, thus are required to be synthesised as thin films for use in such applications. The numerous synthetic techniques (PVD, sol-gel method, PLD, CVD, APCVD and AACVD), for making metal oxide thermochromic thin films are described in reference to the production of vanadium (IV) oxide and compared. Finally rare earth nickelates exhibiting thermochromism are described.

The Emerging Global Trends in Hydrogen Energy Research for Achieving the Net Zero Goals

Ashutosh Tiwari

Advanced Materials Letters, 2021, Volume 12, Issue 10, Pages 1-5
DOI: 10.5185/aml.2021.15697

As the world is entering a phase of realization to mend ways to build a climate-neutral, healthy, and sustainable environment all around and many prominent steps are taken to achieve the goal of net-zero. The advancement of materials used for energy and production purposes is being transformed and developed in ways that will ensure sustainable development without harming of the ecology. One such strong action brought is the use of hydrogen energy towards climate neutrality. Hydrogen is now considered a very important product for aiming at zero waste as it can make it possible to remove fossil fuels usage and will play a very important role in the energy transformation of the world to sustainable development goals. It is very important to reduce the emission of carbon from industries and vehicles and at the same time give longer energy storage. As the European Deal and the United Nations move forward for attaining net-zero goals with the introduction of clean hydrogen energy and its uses have been the showstopper for various conversions in various sectors which will ensure reaching global sustainability. 

Removal of dyes from wastewater by nanomaterials : A review

Wenqian Ruan; Jiwei Hu; Jimei Qi; Yu Hou; Chao Zhou; Xionghui Wei

Advanced Materials Letters, 2019, Volume 10, Issue 1, Pages 9-20
DOI: 10.5185/amlett.2019.2148

Dyes are widely used to colour products in textile, leather tanning, cosmetics, pigment and many other industries. Effluents discharged from these industries cause potential hazards to environment and human health. Hence, the removal of dyes from water/wastewater has gained a huge attention in recent years. So far, biological, chemical and physical methods are the traditional techniques, of which adsorption is found to be a more effective and cheap method for removing dyes. Nanotechnology has applied successfully to the water/wastewater treatment and emerged as a fast-developing promising field. Application of nanomaterials (NMs) in dyes removal seems to be an efficient way. In this review, extensive literature information was presented with regard to dyes, its classification and toxicity, different methods for dyes removal including the removal of dyes by NMs. It is evident from the literature survey that NMs have shown good capability for the removal of dyes. 

Synthesis Of Air Stable Copper Nanoparticles And Their Use In Catalysis

Razium Ali Soomro; Syed Tufail Hussain Sherazi; Najma Memon; Mohammad Raza Shah; Nazar Hussain Kalwar; Keith Richard Hallam; Afzal Shah

Advanced Materials Letters, 2014, Volume 5, Issue 4, Pages 191-198
DOI: 10.5185/amlett.2013.8541

The undertaken study describes synthesis of air resistant copper nanoparticles (Cu NPs) in an aqueous phase using sodium borohydride as a reducing agent via chemical reduction method. The hydrosol has resistant to oxidation by atmospheric oxygen for several days. The air stability was induced by capping Cu NPs with anionic surfactant “sodium dodecyl sulfate (SDS)”.  Ascorbic acid was used as an antioxidant. These Cu NPs were characterized by ultraviolet-visible (UV-VIS) spectroscopy, which contributed towards the understanding of surface plasmon resonance (SPR) generation and optical behavior of Cu NPs. It was used as an optical tracer for size control and confirmation of Cu NPs and was found to be affected by various parameters like reaction time, pH, concentration of copper sulfate and the surfactant SDS. SPR peaks were found to shift from 597 to 569 nm, while apparent color changes from yellow to brick red.  Further characterization studies were carried out by using fourier transform infrared (FT-IR) spectroscopy to investigate the co-ordination between Cu NPs and SDS. X-ray diffraction (XRD) was used for phase purity of Cu NPs. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used the size and morphological characterization. The average size of the Cu NPs was found to be 15 nm in diameter with an average height of 14 nm. The Cu NPs showed excellent catalytic activity in the reductive degradation of Eosin B (EB) dye in just 16 sec of reaction time and maintained their catalytic activity when reused multiple times. The degradation rate was found to follow first order reaction kinetics with the EB degradation. The Cu NPs enhanced the rate of EB degradation 30 times more than the control test. Copper was found an attractive catalyst in the nanosize regimes. The Cu NPs are more economical as compared to noble metals. The Cu NPs are expected to be suitable alternative and play an imperative role in the fields of catalysis and environmental remediation.

Transforming Energy Technologies for Climate Neutrality Goals

Ashutosh Tiwari

Advanced Materials Letters, 2021, Volume 12, Issue 9, Pages -
DOI: 10.5185/amlett.2021.091658

The world is facing major problems related to global warming, climate change, anthropogenic greenhouse gas emissions, and environmental degradation. They implicate a major worry to take immediate measures to rectify the ways and methods to build a clean world for the future generation to live blissfully. The technological revolution paves a way to combat the current terrible situation using numerous sustainable measures by the advancement of materials. The clean energy transition is mostly adopting in the transport and mobility sectors for reducing the emissions of vehicles. The present scenario of the global climate sets urgent needs to demonstrate country-wise a long-term policy for clean, renewable, and net-zero waste power generation in line with climate neutrality goals.

Latest News

Invite Proposals for the special issue
International Association of Advanced Materials, IAAM invites scholars to submit proposals via email to contact@iaamonline.org for a special issue to publish in the Advanced Materials Letters: ...

Read More ...

Keyword Cloud