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Introduction 

Transition metal oxides (TMOs) based nanomaterials 

exhibit several remarkable electric, optical, optoelectronic, 

spintronic, electrical, luminescent and magnetic properties 

making them potential applicants for modern industries 

[1,2]. TMO nanostructured materials have both novel nano-

effect and outstanding semiconducting characteristics, 

making them promising candidates for nanoscience 

technology [3]. Among various TMOs, ZnO, a wide 

bandgap n-type semiconductor with super excitation 

energy, has received the most attention due to their superior 

physical and chemical properties and numerous used in 

solar cell submissions, thin film transistors (TFTs), sensors, 

photocatalysts, water piercing (hydrogen generation) and 

biomedical applications [4,5]. Pure and doped ZnO is the 

most preferable materials for industrial application because 

of its nontoxic nature, easy synthesis process, chemical 

stability, and its suitability for doping with various metals 

[6,7]. To advance some properties of   Zinc oxide, it is 

generally diluted or doped with some ions like Mn, Al and 

Ni [7].  Zinc oxide doped with 4f rare earth elements 

exhibits more advanced optical, structural and magnetic 

properties compared to that of doped with most commonly 

used 3d transition metals. Particularly, ZnO doped with 

Gd3+ have shown greater magnetic properties and analysed 

in some theoretical and experimental studies [8,9].   

 Based on the dimension, nanomaterials can be 

classified into three categories: zero- dimensional (0-D), 

one-dimensional (1-D), and two-dimensional (2-D) [10]. In 

1-D nanostructure, two dimensions are of the order of 

nanometre and other one is much larger which leads to a 

needle shaped structure like nanorods, nanofibers and 

nanowires. Among different 1-D materials, nanorods are 

more advantageous compared to nanowires and nanotubes 

because they can be fabricated using metals as well as 

nonmetals and their synthesis process is more economic 

and flexible [11,12]. NRs also possess decent mechanical 

properties like shape anisotropy which make them 

attractive and applicable for many applications [13]. 

Different types of metal oxide based nanorod systems have 

been analysed by the researcher K. Navaneethan et al. have 

reported photocatalytic activity of TiO2 nanorods against 

methyl orange with 51% degradation within 150 min [14].  

A. Nikitin et al. synthesized iron oxide nanorods via 

microwave irradiation method and found it most suitable 

for enhanced magnetic hyperthermia [15]. Functional 

properties of tungsten oxide based nanorod were studied by 

A. Azeem et al. in which they reported voltage dependent 

tunable transmittance modulation properties of the same 

[16]. N. W. Kim et al. presented a facile synthesis process 

for the fabrication of high-quality cerium oxide nanorods 

with different diameters via common ion effect method 

[17]. A. Bramantyo et al. have fabricated zinc oxide 

nanorods using the method of seed layer deposition under a 

controlled size mechanism and obtained the nanorods 

having size of 10 nm, crucial for perovskite solar cells [18]. 

Thus, number of optical, electronic, magnetic and 

biomedical properties of the metal oxide based nanorod 

All the elastic, mechanical and thermal properties of Gd-doped ZnO nanorods (NRs) have 

studied using interaction potential model. Gd-doped ZnO nanorods are hexagonal wurtzite 

structure. The characteristic features of elastic characteristics of Gd-doped ZnO NRs imply 

that this is mechanically stable. For mechanical characterization, bulk modulus (B), shear 

modulus (G), Young's modulus (Y), Pugh's ratio (B / G), Poisson’s ratio and anisotropic index 

are evaluated using second order elastic constants. For the investigation of anisotropic 

behaviour and thermophysical properties, ultrasonic velocities and thermal relaxation time 

have been also calculated along with different orientations from the unique axis of the crystal. 

The mechanical properties of the Gd-doped ZnO nanorods are better than at 6% Gd amount 

due to minimum attenuation. The obtained results are analyzed to explore the characteristic of 

ZnO nanorods. Computed elastic, ultrasonic and thermal properties are correlated to evaluate 

the microstructural behaviour of the materials useful for industrial applications. 
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have been reported by the researchers but, to the best of our 

knowledge, very few studies have been done on ultrasonic, 

mechanical and thermal properties of metal oxide based 

nanorods, especially the work representing doping effects 

on these properties have not been reported yet. This 

motivates us to study the ultrasonic, elastic and thermal 

properties of the Gd doped ZnO nanorods.  

 Ultrasonic is a non-destructive technique for material 

characterization and is one of the best methods for material 

characterization not only after the production but during the 

process as well. Ultrasonic properties are significant for the 

study of physical characteristics of the materials such as 

thermal relaxation time, energy density and thermal 

conductivity. Some mechanical constants like bulk modulus, 

shear modulus, Young's modulus, Pugh's ratio, Poisson’s 

ratio and anisotropic index can be easily determined using 

linear elastic constants which in turn help us in predicting the 

response of the crystal under applied stress [19]. Ultrasonic 

attenuation (UA) is the exact main physical parameter to 

describe a material, whichever appreciates the specific 

relationship between the anisotropic behaviour of proximal 

hematinic planes and the affinity and structural motion, some 

physical measures like thermal energy density, specific heat 

and thermal conductivity, is well associated with higher-

order elastic constants [20]. 

 In this work, we were worked diligently to make the 

relationship between thermo physical and microstructural 

properties for Gd-doped ZnO nanorods will help in 

understanding the mechanical behaviour of nanostructured 

Gd-doped ZnO nanorods and its performance and 

significant role in the diagram of manufacturing apparatus 

with useful physical properties under moderate working 

conditions. For that, we have considered ultrasonic 

velocities, attenuation coefficients, acoustic coupling 

constants, elastic stiffness constant and thermal relaxation 

time for Gd-doped ZnO nanorods. The bulk modulus (B), 

shear modulus (G), Young's modulus (Y), Pugh's ratio (B / 

G), Poisson’s ratio and anisotropic index were also 

calculated and discussed for %Gd-doped ZnO nanorods. 

Theory 

There are numerous methods to analyses second order elastic 

constants (SOECs) of hexagonal materials. Meanwhile, a 

first-principal technique based on DFT in the quasi-harmonic 

approximation (QHA) and generalized gradient 

approximation (GGA) are commonly used for determination 

of second and third order elastic constants. The technique 

based on interaction potential model is one of the well-

established methods for the deduction of second order elastic 

constants (SOECs) of hexagonal structured material. In 

present work, the Lenard Jones interaction potential model 

approach was used for the evaluation of SOECs. The higher 

order elastic constants can be calculated by the estimation of 

elastic energy density with strain. A generalized nth order 

elastic constant is expressed as partial derivatives of the free 

energy density of the medium under finite deformation, 

given by the following expression [21,22] 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛... =
𝜕𝑛𝐹

𝜕𝜂𝑖𝑗𝜕𝜂𝑘𝑙𝜕𝜂𝑚𝑛....
                       (1) 

where, F and 𝜂𝑖𝑗 are free energy density and Lagrangian 

strain tensor, respectively. Using Taylor series, F can be 

described in terms of strain η as follows: 

𝐹 = ∑ 𝐹𝑛
∞
𝑛=0 = ∑

1

𝑛!

∞
𝑛=0 (

𝜕𝑛𝐹

𝜕𝜂𝑖𝑗𝜕𝜂𝑘𝑙𝜕𝜂𝑚𝑛...
) 𝜂𝑖𝑗𝜂𝑘𝑙𝜂𝑚𝑛 . .. (2) 

Thus, the free energy density upto cubic term is written as:  

𝐹2 + 𝐹3 =
1

2!
𝐶𝑖𝑗𝑘𝑙𝜂𝑖𝑗𝜂𝑘𝑙 +

1

3!
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑖𝑗𝜂𝑘𝑙𝜂mn (3) 

For HCP material the basis vectors are𝑎1 = 𝑎 (
√3

2
,
1

2
, 0), 

𝑎2 = 𝑎(0,1,0) and 𝑎3 = 𝑎(0,0, 𝑐)in Cartesian system axes. 

Here a and c are the unit cell parameters. The unit cell of 

HCP material consists of two non-equivalent atoms: six 

atoms in basal plane and three-three atoms above and below 

the basal plane. Thus, both first and second neighbourhood 

consists of six atoms. The 𝑟1 = 𝑎(0,0,0)and 𝑟2 =

(
𝑎

2√3
,
𝑎

2
,
𝑐

2
) are the position vectors of these two types of 

atoms. 

 The potential energy per unit cell up to second nearest 

neighbour is written as follows: 

𝑈2 + 𝑈3 = Σ
6
𝐼=1 𝑈(𝑟𝐼) + Σ

6
𝐽=1 𝑈(𝑟𝐽)  (4) 

where, I refer to atoms in the basal plane and J refers to 

atoms above and below the basal plane. When the crystal is 

deformed homogeneously then interatomic vectors in 

undeformed state (𝑟) and deformed state (𝑟′) are related as:  

(𝑟′)2 − (𝑟)2 = 2𝜀𝑖𝜀𝑗𝜂𝑖𝑗 = 2𝛩   (5) 

where, 𝜀𝑖 and 𝜀𝑗are the Cartesian component of vector r. 

The energy density U can be explained in terms of 𝛩 as [21, 

22] 

𝑈𝑛 = (2𝑉𝑐)
−1𝛴

1

𝑛!
𝛩𝑛𝐷𝑛𝜑(𝑟)                                                  (6) 

Using equations (4) and (6), the energy density U involving 

cubic terms can be written as: 

𝑈2 + 𝑈3 = (2𝑉𝑐)
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1
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The energy density is considered to be function of Lennard 

Jones potential and given as: 

𝜑(𝑟) = −
𝑎0

𝑟𝑚
+

𝑏0

𝑟𝑛
      (8) 

where, a0, b0 represent constants; m, n are integers and r are 

the distance between atoms. Taking the approximation of 

the interaction potential up to second nearest neighbours, 

the crystal symmetry exhibits the six second order elastic 

constants (SOECs) of the hexagonal material and 

formulations of elastic constants were taken by our 

previous papers [21,22]. 

 Bulk modulus and shear modulus were calculated 

using Voigt and Reuss’ methodologies [23,24]. The 



 

 
calculations of unvarying stress and unvarying strain were 

used in the Voigt and Reuss’ methodologies. Furthermore, 

From Hill’s methods, average values of the both 

methodologies were used toward compute ensuing values 

of B and G [25]. Young’s modulus and Poisson’s ratio are 

considered using values of bulk modulus and shear 

modulus respectively [26,27]. The following expressions 

(Equations (1)) were used for the evaluation of Y, B, G  

and σ. 

𝑀 = 𝐶11 + 𝐶12 + 2𝐶33 − 4𝐶13;

C2 = (𝐶11 + 𝐶12)𝐶33 − 4𝐶13 + 𝐶
2
13;

𝐵𝑅 =
𝐶2

𝑀
;B𝑉 =

2(𝐶11 + 𝐶12) + 4𝐶13 + 𝐶33
9

;

𝐺𝑉 =
𝑀 + 12(𝐶44 + 𝐶66)

30
;G𝑅 =

5𝐶2𝐶44𝐶66
2[3𝐵𝑉𝐶44𝐶66 + 𝐶

2(𝐶44 + 𝐶66)]
;

𝑌 =
9𝐺𝐵

𝐺 + 3𝐵
;      B =

𝐵𝑉 +𝐵𝑅
2

;         G =
𝐺𝑉 + 𝐺𝑅

2
; 𝜎 =

3B-2G

2(3B+ 𝐺)}
 
 
 
 

 
 
 
 

(9) 

 The mechanical and anisotropic properties of materials 

are studied by estimating the ultrasonic velocity. There are 

three types of modes of propagation of the ultrasonic wave 

in the hexagonal structured materials. One of them is a 

longitudinal mode (VL) and other two are shear modes (VS1, 

VS2). The velocities of ultrasonic wave as a function of 

angle ( ) (between direction of propagation and unique 

axis (z axis)) are given by the following set of equation: 

𝑉𝐿
2 = {𝐶33 𝑐𝑜𝑠

2 𝜃 + 𝐶11 𝑠𝑖𝑛
2 𝜃 + 𝐶44 +

{[𝐶11 𝑠𝑖𝑛
2 𝜃 − 𝐶33 𝑐𝑜𝑠

2 𝜃 + 𝐶44(𝑐𝑜𝑠
2 𝜃 − 𝑠𝑖𝑛2 𝜃)]2

+4𝑐𝑜𝑠2 𝜃 𝑠𝑖𝑛2 𝜃 (𝐶13 + 𝐶44)
2}1/2}/2𝜌

𝑉𝑆1
2 = {𝐶33 𝑐𝑜𝑠

2 𝜃 + 𝐶11 𝑠𝑖𝑛
2 𝜃 + 𝐶44 −

{[𝐶11 𝑠𝑖𝑛
2 𝜃 − 𝐶33 𝑐𝑜𝑠

2 𝜃 + 𝐶44(𝑐𝑜𝑠
2 𝜃 − 𝑠𝑖𝑛2 𝜃)]2

+4𝑐𝑜𝑠2 𝜃 𝑠𝑖𝑛2 𝜃 (𝐶13 + 𝐶44)
2}1/2}/2𝜌

𝑉𝑆2
2 = {𝐶44 𝑐𝑜𝑠

2 𝜃 + 𝐶66 𝑠𝑖𝑛
2 𝜃}/𝜌 }

 
 
 

 
 
 

               (10)  

where, VL, VS1, and VS2 are the longitudinal, quasi-shear, 

and shear wave velocities;  and  are the density of the 

material. For hexagonal material the Debye average 

velocity given by the equation as [28-30] 

𝑉𝐷 = [
1

3
(
1

𝑉𝐿
3 +

1

𝑉𝑆1
3 +

1

𝑉𝑆2
3 )]

−1/3

                                                  (11) 

 The thermal relaxation time, denoted by τ, and is given 

by following expression: 

𝜏 = 𝜏𝑆 = 𝜏𝐿/2 =
3𝑘

𝐶𝑉𝑉𝐷
2    (12) 

where the 𝜏𝐿 and 𝜏𝑆 represent the relaxation time for the 

longitudinal wave and shear wave are represented and k is 

the thermal conductivity of the material.  

Results and discussion 

Higher order elastic constants 

In current analysis, we have calculated the six second order 

elastic constants using Lennard-Jones potential model. The 

lattice parameters ‘a’ (basal plane parameter) and ‘p’ (axial 

ratio) for (0%, 1%, 2%, 3%, 4%, 5% and 6%) Gd-doped 

ZnO nanorods are 3.2483Å, 3.2480Å, 3.2477Å, 3.2475Å, 

3.2475Å, 3.2475Å, 3.2475Å and 1.6034, 1.60325, 1.60313, 

1.603, 1.60315, 1.60325, 1.6034 respectively. [31] The 

values of positive integers m and n are considered 6 and 7, 

respectively, for all the samples. The values of b0 are 

2.095x10-62 erg cm7 for all samples of Gd-doped ZnO 

nanorods. Values of second order elastic constants were 

calculated for these Gd-doped ZnO nanorods is offered now 

Table 1. 

Table 1. SOECs (in GPa) of Gd-doped ZnO at room temperature. 

 Gd-doped ZnO nanorods had the highest elastic 

constant values, which are important for the material, as 

these are associated with the stiffness parameter. SOECs 

are used to determine the associated parameters. Highest 

elastic constant values found for nanostructured Gd-doped 

ZnO nanorods are indicative of their better mechanical 

properties.  

 Evidently, for steady of the nanostructured compound, 

the five independent SOECs (Cij, namely C11, C12, C13, C33, 

C44) would satisfy the well-known Born- Huang’s stability 

norms [26,27] i.e., C11− |C12| > 0, (C11+C12) C33− 2C2
13> 0, 

C11> 0 and C44 > 0. Which is understandable since Table-1. 

It is evident that the values of elastic constant are positive 

too satisfies Born-Huang's mechanical stability constraints 

and therefore totally these compounds are mechanically 

stable. It is obvious from Table 1 that, there is good 

agreement between the present and reported 

theoretical/experimental SOECs of pure (without doped) 

ZnO nanorods [32,33]. Thus, there is respectable agreement 

between presented and the reported values which is 

correlated with elastic constants. Therefore, our theoretical 

methodology is well justified for the evaluation of SOECs 

of nanostructured compounds. Therefore, the applied 

theory for valuation of SOECs is justified. 

 The values of B, G, Y, B/G and σ for nanostructured 

Gd-doped ZnO nanorods at room temperature is calculated 

using Equation (9) and existing in Table 2. 

Table 2. Voigt–Reus’ constants (M and C2), B (x 1010Nm-2), G (x 1010Nm-

2), Y (x 1010Nm-2), σ, B/G for % Gd-doped ZnO nanorods. 

  M C2 

(104) 

Br Bv Gr Gv Y   B/G       G/B       σ      

0%Gd 

-ZnO 

511 5.64 110 100 125 66 220 1.13 0.91 0.15 

3%Gd 

-ZnO 

52 6.19 118  106  70  75 173 1.22  0.82 0.18 

6%Gd 

-ZnO 

524 5.93 113  103  68  71 171  1.56 0.64 0.24 

Gd%  

doped ZnO 
C11 C12 C13 C33 C44 C66 

0%Gd-ZnO 211.4 50.3 42.3 209.2 46.3 76.3 
1%Gd-ZnO 215.3 52.0 43.0 211.1 49.3 78.2 
2%Gd-ZnO 217.2 54.1 44.2 214.0 52.0 83.7 
3%Gd-ZnO 221.3 55.7 45.4 216.4 55.3 87.7 
4%Gd-ZnO 214.0 54.3 45.4 215.3 53.5 85.5 
5%Gd-ZnO 218.2 53.8 44.8 214.1 52.2 83.2 
6%Gd-ZnO 217.4 53.0 43.2 213.0 51.3 82.1 
ZnO [32] 2064 -- 10810 2114 44.31 44.61 

ZnO [33] 207 -- 101 209 46.1 44.5 



 

 
 It is established that the values of B, Y, and G of 

nanostructured Gd-doped ZnO nanorods, the Gd-doped 

ZnO NWs have little Stiffness. ‘B/G’ and ‘σ’ are the 

measure of brittleness and ductility of solid. If the value of 

σ = ≤0.26 and B/G = ≤1.75, the materials is generally 

brittle, otherwise it is ductile in nature [34,35]. Our finding 

of lower values of B/G and σ compared to their critical 

values indicates that nanostructured Gd-doped ZnO 

nanorods are brittle in nature. The values of ‘σ’ evaluated 

for Gd-doped ZnO nanorods are smaller than its critical 

value. It indicates that Gd-doped ZnO nanorods is stable 

against shear. The stronger degree of covalent bonding 

leads to higher hardness. The compressibility, hardness, 

ductility, toughness, brittleness and bonding characteristic 

of the material are too well connected with the second order 

elastic constants.  

Ultrasonic velocity and allied constraints 

In present analysis, we have correlated the mechanical and 

isotropic behavior of the compound with the ultrasonic 

velocity. We have calculated the longitudinal ultrasonic 

wave velocity (VL), shear ultrasonic wave velocity (VS), the 

Debye average velocity (VD) and the thermal relaxation 

time (τ) for Gd-doped ZnO nanorods.  

 The angular dependences of ultrasonic wave velocity 

(VL, VS1, VS2 and VD) at different doping percentage are 

presented in Figs. 1-4. The angles are measured form the z-

axis of the crystal. Form Fig. 1-2, the velocities VL and VS1 

of Gd-doped ZnO nanorods have minima and maxima at 

45° respectively with the z-axis of the crystal. Form Fig. 3, 

it finds that VS2 increases with angle and have maximum at 

550 angles. The anomalous behavior of angle dependent 

velocity is due to combined effect of SOECs and density. 

The property of the angle dependent velocity curves in this 

work is similar to nature of angle dependent velocity curve 

found for other hexagonal type’s material [34,35]. Thus, the 

angle dependence of the velocities in nanostructured Gd-

doped ZnO nanorods is justified.  

 

Fig.1. VL vs angle with z- axis of crystal of % Gd doped ZnO nanorods. 

 
Fig. 2. VS1 vs angle with z- axis of crystal of % Gd doped ZnO nanorods. 

 
Fig. 3. VS2 vs angle with z- axis of crystal of % Gd doped ZnO nanorods. 

 
Fig.4. VD vs angle with z- axis of crystal of % Gd doped ZnO nanorods. 

 Fig. 4 shows the variation of Debye average velocity 

(VD) with the angle made with the z- axis of the crystal. It 

is clear that VD increases with the angle and reaches 

maximum at 550 for Gd-doped ZnO nanorods. As the 

calculation of VD involves the velocities VL, VS1 and VS2 

[36,37] It is understandable that the variation of debye 

average velocity is affected by the fundamental ultrasonic 

velocities. Maximum value of VD at 55° is due to a 
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significant decrease in longitudinal wave velocities and an 

increase in shear wave velocities. It may be determined that 

the average sound wave velocity is a maximum when a 

sound wave travels at 550 angles with the z- axis of these 

crystal.   

 When an ultrasonic wave passes through the medium, 

it disturbs the equilibrium phonons. These phonons return 

to their equilibrium state after a certain time called thermal 

relaxation time ‘τ’ [38]. The variation of thermal relaxation 

time along different orientations is shown in Fig. 5. From 

the figure, it is clear that thermal relaxation time with 

doping exhibits opposite trends when compared to the 

ultrasonic velocities. With increasing concentration of 

doping, thermal relaxation time increases which is due to 

the combined effect of the average Debye velocity, thermal 

conductivity, and specific heat. The minimum value of ‘’ 

for wave propagation along  = 550
 denotes that the re-

establishment time for equilibrium distribution of thermal 

phonons will be minimum for the propagation of wave 

along this direction. The calculated value of ‘’ is of the 

order of 10-12 s. This shows that the distribution of thermal 

phonons restores its equilibrium in this time period after 

passing the sound wave. The information of thermal 

relaxation time and that of ultrasonic velocity will play a 

crucial role in the determination of ultrasonic absorption in 

the medium.  

 Since A V-3 and velocity is the largest for 6% Gd 

doped ZnO nanorods among 0%Gd, thus the attenuation A 

should be smallest and material should be most ductile for 

6% Gd doped ZnO nanorods.  

 

 
Fig. 5. Relaxation time vs angle with z- axis of crystal of % Gd doped ZnO 

nanorods. 

Conclusion 

Based on the above conversation is valuable to state that: 

• The principle established on simple interaction 

potential model remains valid for calculating higher-

order elastic coefficients for hexagonally Gd-doped 

ZnO nanorods.  

• Elastic properties of Gd-doped ZnO nanorods imply 

that this is mechanically stable. 

• For Gd-doped ZnO nanorods the thermal relaxation 

time is found to be of the order of picoseconds, which 

defends their hexagonal structure. As ‘’ has smallest 

value along  = 450 for all samples, the time for re-

establishment of equilibrium distribution of phonons, 

will be minimum, for the wave propagation in this 

direction. 

• The mechanical properties of the 6% Gd-doped ZnO 

nanorods are better than others doped graphene 

materials. 

• Gd-doped ZnO nanorods behave as its purest form for 

6% doped graphene and are more ductile demonstrated 

by the minimum attenuation while at 0% Gd-doped 

ZnO nanorods are least ductile.  

These results will provide a ground for investigating 

the major thermo physical properties in the field of Gd-

doped ZnO nanorods. Nanorods present several 

advantages, like a larger surface-area to-volume ratio, a 

direct carrier conduction path, a large variety of potential 

novel properties available through the control of size and 

structure, thermal stability and high compatibility with 

standard industrial device fabrication technologies. Such 

structures are of particular interest to the researchers; 

Further intensive research on designed syntheses and easy 

nanofabrication of nanorods for the large-scale device 

applications would provide an enormous impact on 

nanotechnology and open an unprecedented avenue in 

energy, magnetic, mechanical, electronic, and spintronic 

applications. However, the future nano technology for 

nanorods will be dependent on how we can minimize the 

production cost by maintaining high efficiency and long 

stability of the devices. Also, study can be beneficial for the 

processing and non-destructive characterization of 

nanostructured Gd-doped ZnO nanorods. 
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Graphical abstract 

The elastic, mechanical and thermal properties of Gd-doped ZnO nanorods 

(NRs) have been studied using Lenard Jones potential interaction potential 
model. The orientation dependent ultrasonic velocities and thermal 

relaxation time have been evaluated for the determination of anisotropic 

behaviour and thermophysical properties. The mechanical properties of 
the Gd-doped ZnO nanorods are better than at 6% Gd amount due to 

minimum attenuation.  

 
 
 

 


