Environmental & Green Materials
Marian Catalin Grosu; Emilia Visileanu; Alexandra Gabriela Ene; Razvan Victor Scarlat; Virgil Emanuel Marinescu
Abstract
This paper presents the polypropylene (PP) micro-nano particles (MNPs) exposure routes of textile industry personnel and analyses the characteristics of such particles collected in and outside the workplaces. A Laser Aerosol Spectrometer set was used to determine: the total suspended particles (TSP), ...
Read More
This paper presents the polypropylene (PP) micro-nano particles (MNPs) exposure routes of textile industry personnel and analyses the characteristics of such particles collected in and outside the workplaces. A Laser Aerosol Spectrometer set was used to determine: the total suspended particles (TSP), PM10, PM2.5, PM1 fractions (µm/m3), and the total number of particles (TC) (1/l) from the air. Specific methods for descriptive statistics were used to characterize the particle populations. Mean, dispersion and standard deviation, median and quartiles, skewness and kurtosis for asymmetry, and highlighting the cases in which they should be performed were calculated. The box plots and histograms graphs for TSP, PM10, PM2.5, and PM1, TC variables. The comparative analysis of the results led to the identification of the fraction of the particles with the highest value concentration in the air. The particles were collected on quartz and polycarbonate filters with gold membrane using TECORA and GilAirPlus pumps. The mass of particles collected was determined by weighing the filters before and after collection, using an electronic balance. Characterization of PP dust collected by analysis: Optical microscope, Scanning Electron Microscopy, µRaman spectroscopy, FTIR, and TG-DSC allowed the identification of the shape, size, and structural footprint of PP particles.

Ceramic Composite
G. Upender; V. Chandra Mouli; V. Sreenivasulu; Praveena Kuruva; M. Prasad
Abstract
The new tellurite glasses with chemical composition 64TeO2-15CdO-(20-x) ZnO-xLi2O-1V2O5 (x= 0, 5, 10, 15 and 20 mol %) were synthesized by traditional melt quench hardening method. The glass samples showed broad humps of typical amorphous phase in the X- ray diffraction patterns. The physical properties ...
Read More
The new tellurite glasses with chemical composition 64TeO2-15CdO-(20-x) ZnO-xLi2O-1V2O5 (x= 0, 5, 10, 15 and 20 mol %) were synthesized by traditional melt quench hardening method. The glass samples showed broad humps of typical amorphous phase in the X- ray diffraction patterns. The physical properties of glass samples such as density (ρ), molar volume (Vm), oxygen packing density (OPD), refractive index (n), molar refractivity (Rm) and metallization parameter (M) were estimated. The Fourier transform infrared spectroscopy (FTIR) studies exhibited that replacement of ZnO by Li2O forms significantly some basic structural units of TeO4, TeO3/TeO3+1 and ZnO4. Differential scanning calorimetry (DSC) was employed to find out the glass transition temperature (Tg) and thermal stability ( ). The optical enthrallment studies exhibited that the cut-off wavelength (λ) decreases while optical energy gap (Eopt) and Urbach energy ( ) values increases with an increase an escalation of Li2O content. This tellurite glasses possess an important use such as sensor devices, storage of data system and industrial applications etc.
Savithri. M. Nampoothiri; Viji. C; E. M. Mohammed; Robin Francis
Abstract
Nickel ferrite (NiFe₂O₄) nanoparticles were synthesized using sol-gel method and the powdered samples were sintered at 100°C and 200°C. X-ray Diffraction (XRD) patterns were used to determine the structure of nickel ferrite nanoparticles. Obtained the lattice parameter from the XRD data and ...
Read More
Nickel ferrite (NiFe₂O₄) nanoparticles were synthesized using sol-gel method and the powdered samples were sintered at 100°C and 200°C. X-ray Diffraction (XRD) patterns were used to determine the structure of nickel ferrite nanoparticles. Obtained the lattice parameter from the XRD data and calculated the particle size using Debye- Sherrer formula. The details of the surface morphology of NiFe2O4 nanoparticles were studied by Scanning Electron Microscopic (SEM) analysis. The work aims at the investigation of the dielectric properties such as dielectric loss and permittivity of Nickel ferrite nanoparticles at various frequencies and temperatures. In addition, the ac conductivity of the nickel ferrite nanoparticles was studied.
E. Kutelia; L. Rukhadze; T. Dzigrashvili; O. Tsurtsumia; D. Gventsadze
Abstract
The present work deals with the special experiments on SEM-EDX study of morphology, chemical composition and topological transformations of the initial ground surface of the bulk iron plate-substrate after its interaction with the ethanol vapor pyrolysis products at high temperatures in the closed-loop ...
Read More
The present work deals with the special experiments on SEM-EDX study of morphology, chemical composition and topological transformations of the initial ground surface of the bulk iron plate-substrate after its interaction with the ethanol vapor pyrolysis products at high temperatures in the closed-loop and open cycle reactors. Our experiments have shown that the mechanism of formation of Fe clusters-doped CNFs on plate-substrate surfaces may be represented as a process, the first stage of which is a protonation of the substrate subsurface layers caused by diffusion of hydrogen atoms facilitating the formation of 3D nano-groups of Fe atoms assembled in the characteristic clusters with magic numbers of atoms, depending on the thermodynamics of the metal. The spontaneous coalescence of these clusters into giant Fe-clusters at comparatively low temperatures and formation of iron nano-droplets at comparatively high temperatures results in the formation of a nanopatterned surface with the uniformly distributed catalytic centers of CNFs nucleation. The second stage of the process is a nanoparticle-guided growth through the VLS or VS (at low temperatures) growth mechanisms in which the one cluster provides nucleation of only one CNF particle so that the sizes of the nucleation centers determine the basic size of the CNF nanoparticles.

Boris A. Gurovich; Denis A. Kuleshov; Dmitriy A. Maltsev; Oleg K. Chugunov; Alexey S. Frolov; Yaroslav I. Shtrombakh
Abstract
The operation of nuclear graphite in graphite-moderated reactors is accompanied by its properties degradation under the influence of neutron irradiation, which limits their service life. In this connection, it is of interest to identify the mechanisms that determine the properties degradation of graphite ...
Read More
The operation of nuclear graphite in graphite-moderated reactors is accompanied by its properties degradation under the influence of neutron irradiation, which limits their service life. In this connection, it is of interest to identify the mechanisms that determine the properties degradation of graphite materials at various operational stages of operating RBMK power reactors.

Amel Tounsi; Djahida Talantikite-Touati; Hamid Merzouk; Hadjira Haddad; Roumaïssa Khalfi
Abstract
The thin layers of undoped ZnS and ZnS doped La with different concentrations (2, 4, 6, 8 and 10%) were deposited on glass substrates using sol-gel and dip-coating methods. The structural characterization of these samples was carried out by the X-rays diffraction (XRD), scanning electron microscopy ...
Read More
The thin layers of undoped ZnS and ZnS doped La with different concentrations (2, 4, 6, 8 and 10%) were deposited on glass substrates using sol-gel and dip-coating methods. The structural characterization of these samples was carried out by the X-rays diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). UV-visible and Fourier Transform Infrared spectroscopy (FTIR) have been used to study the effect of dopant on the optical properties of ZnS doped La thin films. Atomic force microscopy images of the films have revealed homogeneous and granular structure and the SEM micrographies show deposit films with uniform and porous structure. The optical transmission spectra in the UV - visible range have shown that all the doped films present a good optical transmission in the visible domain.

M. K. Mohanapriya; Kalim Deshmukh; M. Basheer Ahamed; K. Chidambaram; S. K. Khadheer Pasha
Abstract
Zeolite 4A nanoparticles were incorporated into Poly (3, 4 - ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) and Polyvinyl alcohol (PVA) blend matrix to prepare PEDOT: PSS/PVA/Zeolite 4A nanocomposites using solution casting technique. The structure and morphology of nanocomposites were ...
Read More
Zeolite 4A nanoparticles were incorporated into Poly (3, 4 - ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) and Polyvinyl alcohol (PVA) blend matrix to prepare PEDOT: PSS/PVA/Zeolite 4A nanocomposites using solution casting technique. The structure and morphology of nanocomposites were examined using Fourier transform infrared spectroscopy, X-ray diffraction, UV-Vis spectroscopy and Scanning electron microscopy. The mechanical and dielectric properties of nanocomposites were also evaluated. The FTIR and XRD results indicate the strong interaction between the Zeolite 4A nanoparticles and the polymer matrix. The SEM micrographs show the homogeneous dispersion of Zeolite 4A into the polymer matrix. The nanocomposite exhibits a high dielectric constant and low dielectric loss, which could be due to proper dispersion and good interaction between Zeolite 4 A and polymer matrix. Thus, based on the results obtained it can be concluded that PEDOT: PSS/PVA/Zeolite 4A nanocomposites can be used as a flexible dielectric material for embedded capacitor applications.
Baljinder Kaur; Lakhbir Singh; V. Annapu Reddy; Dae-Yong Jeong; Navneet Dabra; Jasbir S. Hundal
Abstract
Pure and Sr?doped bismuth ferrite Bi1-xSrx FeO3 (x = 0, 0.1, 0.2, 0.3) nanoparticles have been synthesized using combustion method. X- Ray diffraction study of these compounds confirms the rhombohedral structure with R3c space group. BiFeO3 peaks were observed at 2θ = 22.46o, 31.80o, 32.11o, 39.519o, ...
Read More
Pure and Sr?doped bismuth ferrite Bi1-xSrx FeO3 (x = 0, 0.1, 0.2, 0.3) nanoparticles have been synthesized using combustion method. X- Ray diffraction study of these compounds confirms the rhombohedral structure with R3c space group. BiFeO3 peaks were observed at 2θ = 22.46o, 31.80o, 32.11o, 39.519o, 45.79o, 51.35o, 56.98o and 57.16o having miller indices as (012), (104), (110), (202), (024), (116), (214) respectively. The traces of secondary phase also appear along with desired phase of Sr?doped bismuth ferrite Bi1-xSrxFeO3 samples. The scanning electron microscopy of fractured pellets of the samples reveals the decrease in grain size with increase of Sr doping in Bi1-xSrxFeO3. Magnetic studies were carried out at room temperature up to a field of 10 kOe. M-H hysteresis loops showed a significant increase in magnetization with Sr substitution in BiFeO3. Compared to weak magnetisation with magnetizing field (M-H) shown by BiFeO3 nanoparticles (Remnant magnetization, Mr ~ 0.4x10-3 emu/g and coercive field, Hc ~ 0.065 kOe respectively), a significant enhancement in M-H loop was observed in Bi1-xSrx FeO3 compounds. The value of Mr ~ 0.525 emu/g and Hc ~ 3.70 kOe have been found to be maximum for x = 0.30 in Bi1-xSrx FeO3 compounds. Leakage current studies showed decrease in leakage current density of doped samples to that of pure BiFeO3 and x = 0.10 gives minimum value of 4.78 x 10-6 A/cm2 at 350 V/cm. The ferroelectric nature was confirmed by observed P-E loops in all the samples.
Abdul Rauf Khaskheli; Saba Naz; Razium Ali Soomro; Faruk Ozul; Abdalaziz Aljabour; Nazar Hussain Kalwar; Abdul Waheed Mahesar; Imren Hatay Patir; Mustafa Ersoz
Abstract
This report demonstrates a facile and green fabrication method for the nickel nanoparticles using L-lysine as an efficient protecting agent. The application of green amino acid (L-lysine) enabled formation highly spherical and well-dispersed nanoparticles with average diameter in the range of 10 ±2.5 ...
Read More
This report demonstrates a facile and green fabrication method for the nickel nanoparticles using L-lysine as an efficient protecting agent. The application of green amino acid (L-lysine) enabled formation highly spherical and well-dispersed nanoparticles with average diameter in the range of 10 ±2.5 nm. UV-Vis spectroscopy was used as a primary tool to elaborately study and optimize the necessary experimental condition for the developed synthetic protocol. Fourier transform infrared spectroscopy (FTIR) was used to confirm the surface protection of Ni NPs via L-lysine molecules whereas; atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided morphological and topographical view of the as-synthesized Ni NPs. In addition, small angle X-ray scattering (SAXS) and X-ray diffraction (XRD) were used to evaluate compositional characteristics of fabricated L-lysine protected Ni NPs. The as-synthesized Ni NPs demonstrated excellent catalytic potential when utilized as heterogeneous catalyst for reduction of methylene Blue (MB) in the presence of sodium borohydride (NaBH4). The observed catalytic reaction was determined to follow pseudo first order kinetics with rate constant (K) and turn over frequency (TOF) determined to be 0.0224 and TOF value of 0.00411 s -1 respectively.
Tauseef Shahid; Muhammad Arfan; Waqas Ahmad; Tayyaba BiBi; Taj Muhammad Khan
Abstract
In this article, we report feasibility of composite hydroxide-mediated (CHM) approach for the synthesis and doping of Cu1-xZnxO (x=0%, 3%, 6% and 9%) nanomaterial. The proposed method offers a low cost, low temperature and environmentally friendly approach to preparing doped nanomaterials in a feasible ...
Read More
In this article, we report feasibility of composite hydroxide-mediated (CHM) approach for the synthesis and doping of Cu1-xZnxO (x=0%, 3%, 6% and 9%) nanomaterial. The proposed method offers a low cost, low temperature and environmentally friendly approach to preparing doped nanomaterials in a feasible and cost- effective route. Further, we investigate the effect of incorporated Zn +2 on the properties of produced Cu (II) O nanostructures. The X-ray diffraction analysis confirms formation of the single-phase monoclinic Cu (II) O and incorporation of Zn at the Cu-lattice sites. The crystalline structure is improved and the average grain size has increased from 85.32 nm to 124.86 nm. FTIR spectroscopy shows characteristic vibrational peaks of the Cu (II)-O bonding which confirms formation of the Cu (II) O. SEM micrographs reveal interesting flower like dense features with morphological peculiarities and seems to strongly depend on the content of the incorporated Zn +2 . The UV- visible spectra are measured to study the direct bandgap of the prepared nanomaterial. The direct bandgap found to be in the range of 3.73 - 3.89 eV. The method seems experimentally friendly and provides a feasible and a high productive fast synthesis route for the doped oxide nanomaterials in a single step with tunable properties for the research purposes. However, the method still requires further investigation to finely control doping for the desired properties of a nanomaterial and to give a potential avenue for further practical scale-up of the production process and applications of novel devices based on doped nanostructures.
Bikash Mandal; I. Basumallick; Susanta Ghosh
Abstract
We report a novel cathode of the molecular formula, Li2MZrO4 (M = Fe, Mn), based on an inexpensive, earth-abundant, and eco-friendly materials, which have theoretical capacities within 119 – 238 mAh.g -1 depending on the number of lithium ions extracted from material, suitable for high power rechargeable ...
Read More
We report a novel cathode of the molecular formula, Li2MZrO4 (M = Fe, Mn), based on an inexpensive, earth-abundant, and eco-friendly materials, which have theoretical capacities within 119 – 238 mAh.g -1 depending on the number of lithium ions extracted from material, suitable for high power rechargeable lithium-ion battery. X-ray diffraction (XRD) revealed tetragonal crystal structure of the synthesized material. SEM images illustrate the formation of porous material with large surface area. The cyclic voltammograms of Li2MZrO4 (M=Fe, Mn) showed only one pair of redox peak corresponding to the anodic and cathodic reactions within a potential window of 2.2 – 4.5 volts vs. Li/Li + . The first discharge capacities were 89 mAhg -1 for Li2FeZrO4, whereas in case of Li2MnZrO4 it was 94 mAhg -1 at 0.1 C rates, which are equivalent to removal of one lithium ion from the compounds.
Amit Kumar Singh Chauhan; Shibin Krishna T.C.; Neha Aggarwal; Monu Mishra; Asad Niazi; Lekha Nair; Govind Gupta
Abstract
Triangular nano-scale pits (TNPs) of Si3N4 are fabricated by reactive nitrogen ion sputtering using low energy nitrogen ions on the Si (553) surface at 500 °C. The electronic structure of the developing Si3N4 interface was monitored in-situ by Auger Electron Spectroscopy (AES) while the ion beam ...
Read More
Triangular nano-scale pits (TNPs) of Si3N4 are fabricated by reactive nitrogen ion sputtering using low energy nitrogen ions on the Si (553) surface at 500 °C. The electronic structure of the developing Si3N4 interface was monitored in-situ by Auger Electron Spectroscopy (AES) while the ion beam induced surface reaction was analysed via X-Ray and Ultraviolet photoemission spectroscopy (XPS & UPS), Photoluminescence and Raman spectroscopy. The morphological development of nanoscale pit structures was observed by Scanning Electron Microscopy (SEM). The formation of Si3N4 was identified by AES, with the appearance of the characteristic reacted Si(LVV) peak at 83 eV, while photoemission spectroscopy confirmed the stoichiometry of Si3N4. The valence band maximum was observed to be located at 2.4 eV below the Fermi level. SEM images showed uniformly distributed Si3N4 TNPs with size varying between 250 to 600 nm (length) and 200 to 400 nm (width). Our work underlines the influence of ion energy and substrate temperature and establishes the conditions for the growth of Si3N3 TNPs by ion induced reactive sputtering.
Taj Muhammad Khan; M. Zakria; Rana I. Shakoor; M. Raffi; Mushtaq Ahmad
Abstract
We report synthesis of the functional ZnO nanostructures (nanowires, nanorods) by a cost-effective and efficient method; called composite-hydroxide-mediated (CHM) approach. Effect of the processing temperature on the particle size, morphology, and subsequently morphological dependent optical emissions ...
Read More
We report synthesis of the functional ZnO nanostructures (nanowires, nanorods) by a cost-effective and efficient method; called composite-hydroxide-mediated (CHM) approach. Effect of the processing temperature on the particle size, morphology, and subsequently morphological dependent optical emissions is investigated. Needle-shaped nanowires are obtained at 200 and 220 o C, of about (500-1500) nm in length, while at 250 o C; nanorods are formed with length in the range of (200-460) nm and width (10-30) nm. Optical study reveals that ZnO nanorods show only ultra-violet (UV) emission while bent nanowires demonstrate both UV and green emissions simultaneously. The week green emission at 2.4 eV indicates no efficient trapping of the photo-generated hole in the nanostructures. Phase purity, crystalline structure, size and chemical nature of the product are probed by XRD, EDX, Raman spectroscopy and FT-IR. The particle size estimated from the spatial correlation phonon confinement model for the E2 (high) phonon mode. The applied approach is believed to be efficient, and a direct route for the synthesis of a wide range of simple and complex oxide nanostructures for novel electro-optical nanodevices.
H. C. Ananda Murthy; Somit Kumar Singh
Abstract
Aluminum matrix composites (AMCs), reinforced with ceramic particulates, have significant applications in the field of aerospace, marine, automobiles, sports and recreation. Al-TiC particulate composite has better potential for high-temperature applications. The corrosion behaviour of Al 6061-TiC particulate ...
Read More
Aluminum matrix composites (AMCs), reinforced with ceramic particulates, have significant applications in the field of aerospace, marine, automobiles, sports and recreation. Al-TiC particulate composite has better potential for high-temperature applications. The corrosion behaviour of Al 6061-TiC particulate composites prepared by stir casting route, has been explored in chloride medium using electroanalytical techniques such as Tafel, Cyclic polarization and Impedance measurements (EIS). SEM and EDX analysis of the microstructures obtained in both matrix alloy and reinforced composites were performed in order to know the effect of titanium carbide on the corrosion resistance of composites. The polarization studies reveal an increase in the corrosion resistance in composites compared to the matrix alloy. The observed increase in corrosion resistance of TiC particulate reinforced composites is attributed to excellent bond integrity of TiC particulates with aluminium and possible electrochemical decoupling between TiC particles and Al 6061 matrix alloy. The EIS study reveals that the polarisation resistance (Rp) increase with increase in TiC content in composites and the corrosion process is mainly charge transfer controlled. Titanium carbide is proved to be a potential reinforcement for improved corrosion resistance in Al MMCs.
N.J. Shivaramu; B.N. Lakshminarasappa; K.R. Nagabhushana; Fouran Singh
Abstract
Nanocrystalline erbium doped yttrium oxide (Y2O3:Er 3+ ) was synthesized by the sol-gel technique using citric acid as complexing agent. The synthesized samples were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM) techniques for phase-purity and microstructure. ...
Read More
Nanocrystalline erbium doped yttrium oxide (Y2O3:Er 3+ ) was synthesized by the sol-gel technique using citric acid as complexing agent. The synthesized samples were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM) techniques for phase-purity and microstructure. Er 3+ doped Y2O3 crystallizes in cubic phase with an average crystallite size of 24.3 nm. The pellets of Y2O3:Er 3+ were irradiated with 100 MeV swift Si 8+ ions with fluence in the range of 3×10 11 - 3×10 13 ions cm -2 . Three well resolved thermoluminescence (TL) glows with peaks at ~422, 525 and 620 K were observed in Er 3+ doped Y2O3 samples. It was observed that the TL intensity was found to increases with increasing Er 3+ concentration up to 0.4 mol% in Y2O3 and thereafter it decreases with further increase of Er 3+ concentration. Also, the intensity of low temperature TL glow peak (~422 K) increases with increasing ion fluence up to 1×10 12 ions cm -2 and decreases with further increase of ion fluences. The TL trap parameters were calculated by glow curve shape method and the deconvoluted glows were exhibit of second order kinetics.
Mayank Pandey; Girish M. Joshi; Kalim Deshmukh; Jamil Ahmad
Abstract
Polyvinyl alcohol (PVA) and Polyvinyl Pyrrolidone (PVP) based polymer electrolytes for different loading wt% of CdCl2 were prepared by solution casting. The structural complexation was confirmed and interlayer spacing (d) was evaluated by using X-ray diffraction (XRD) study. The chemical bonding between ...
Read More
Polyvinyl alcohol (PVA) and Polyvinyl Pyrrolidone (PVP) based polymer electrolytes for different loading wt% of CdCl2 were prepared by solution casting. The structural complexation was confirmed and interlayer spacing (d) was evaluated by using X-ray diffraction (XRD) study. The chemical bonding between polymer and salt was identified by using Fourier transform infrared spectroscopy (FTIR) technique. The FTIR peak at 3402.43 cm -1 in addition of PVP in PVA/CdCl2 composite demonstrates the grafting between two polymers. The presence of ionic bright channels and variation in morphology for different loading wt% of CdCl2 was confirmed by scanning electron microscope (SEM) and was also verified by Atomic force microscopy (AFM) micrographs. The analysis of impedance spectroscopy represented by semicircular pattern is driven by conduction mechanism and correlated with electrical conductivity. The enhanced AC conductivity of polymer electrolyte is directly proportional to frequency (50Hz-1MHz). The maximum value of DC conductivity 1.65x10 -5 S/m evaluated from Arrhenius plots and attribute to high mobility of free charges at higher temperature. The evaluated results of structural, morphological and electrical properties of present composites make the present research good for electrochemical devices.
B.S. Bhau; Sneha Ghosh; Sangeeta Puri; B. Borah; D.K. Sarmah; Raju Khan
Abstract
Synthesis of nanoparticles from various biological systems has been reported, but among all, biosynthesis of nanoparticles from plants is considered as the most suitable method. The use of plant material not only makes the process eco-friendly but also the abundance makes it more economical. The aim ...
Read More
Synthesis of nanoparticles from various biological systems has been reported, but among all, biosynthesis of nanoparticles from plants is considered as the most suitable method. The use of plant material not only makes the process eco-friendly but also the abundance makes it more economical. The aim of this study was to investigate the ability of this plant to synthesis gold nanoparticles and study the properties of the nanoparticles thus produced. Antimicrobial activity and medicinal values of Nepenthes khasiana fascinated us to utilize it for biosynthesis of gold nanoparticles. The synthesized gold nanoparticles were characterized by UV-vis spectrophotometry, Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infra-red Spectroscopy and Transmission Electron Microscopy. Different time intervals for the reaction with aqueous chloroauric acid solution increase in the absorbance with time and became constant giving a maximum absorbance at 599.78 nm at three hours of incubation. The results from XRD, TEM and SEM supports the biosynthesis of triangular and spherical shaped Gold nanoparticles between 50nm to 80 nm. In this study, the antimicrobial property of the AuNPS was exploited against human pathogenic micro-organisms. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of N. Khasiana can be used to produce Gold nanoparticles with significant amount of antimicrobial activity.
Sunita Rattan; Prachi Singhal; Devesh Kumar Avasthi; Ambuj Tripathi
Abstract
Ion implantation is a surface treatment process in which the surface of a sample is bombarded with a beam of energetic dopant ions to implant ions into the matrix of the substrate. In the present work, nanocomposites of poly(3,4-ethylenedioxy thiophene) /poly(4-styrene sulphonate) (PEDOT: PSS) and nanographite ...
Read More
Ion implantation is a surface treatment process in which the surface of a sample is bombarded with a beam of energetic dopant ions to implant ions into the matrix of the substrate. In the present work, nanocomposites of poly(3,4-ethylenedioxy thiophene) /poly(4-styrene sulphonate) (PEDOT: PSS) and nanographite are prepared and subjected to swift heavy ion implantation using the same ion as that of the filler in the nanocomposites. PEDOT: PSS/ nanographite nanocomposites have been synthesized by solution blending method. The prepared PEDOT: PSS/ nanographite nanocomposite films were irradiated with carbon ions (C ion beam, 50 MeV) in fluence range of 3 × 10 10 to 3 × 10 12 ions/cm 2 . The nanocomposite films were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) before and after C ion implantation and were evaluated for their electrical and sensor properties. SEM and XRD studies clearly depict the homogeneous dispersion of nanograhite in polymer matrix along with densification of the polymer nanocomposite. The implanted nanocomposites exhibit better electrical and sensor properties for the detection of nitroaromatics.
Niyaz Parvin Shaik; N. V. Poornachandra Rao; K. V. R. Murthy
Abstract
Pure LaPO4 and LaPO4: Eu (0.5 mol %) Ce (0.5 mol %) phosphors were synthesized by the solid-state reaction method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the particle size analysis were used to characterize ...
Read More
Pure LaPO4 and LaPO4: Eu (0.5 mol %) Ce (0.5 mol %) phosphors were synthesized by the solid-state reaction method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the particle size analysis were used to characterize these samples. The XRD results reveal that the synthesized LaPO4:Eu (0.5 mol%) Ce (0.5 mol%) phosphors are well crystalline and assigned to the monoclinic structure with a main (120) diffraction peak. The calculated crystallite size of pure LaPO4 and LaPO4:Eu, Ce phosphors were 67.6nm and 64nm respectively. Upon excitation at 254nm wavelength, the emission spectrum of pure LaPO4 phosphor emits a maximum intensity peak at 470 (blue) nm. In the emission spectrum of LaPO4:Eu 3+ Ce 3+ phosphor, the low contributions of the red (613nm) 5D0-7F2 emissions and the high intensity of the orange-red (589nm)5D0-7F1 emission results in high color purities.The most intense emissions appearing in the 580-620nm region is responsible for the strong orange-red luminescence observed in the Eu,Ce doped LaPO4 phosphor whose CIE colour coordinates are x = 0.57 and y = 0.43.Thus the prepared phosphors can be used as an orange-red emitting material in the field of illuminations and display devices.
Vishal R. Panse; N.S. Kokode; S.J. Dhoble
Abstract
In this paper we present luminescence results on Tb 3+ doped Sr2(BO3)Cl green phosphor. The vibrational properties of Sr2(BO3)Cl phosphor was studied by Fourier transform infrared spectroscopy. Photoluminescence studies have been carried out to understand the mechanism of excitation and the corresponding ...
Read More
In this paper we present luminescence results on Tb 3+ doped Sr2(BO3)Cl green phosphor. The vibrational properties of Sr2(BO3)Cl phosphor was studied by Fourier transform infrared spectroscopy. Photoluminescence studies have been carried out to understand the mechanism of excitation and the corresponding emission in the as prepared phosphor. As the Tb 3+ ion is commonly used as an activator for the green emission, the excitation and emission spectra indicate that this phosphor can be effectively excited by 380 nm, to exhibit bright green emission centered at 546 nm corresponding to the f→f transition of Tb3 +ions.
M. Raghasudha; D. Ravinder; P. Veerasomaiah
Abstract
Nano-ferrites of the composition Mg Crx Fe2-xO4 (where x=0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were synthesized at a very low temperature (180°C) by Citrate-gel auto combustion method. The as synthesized powders were sintered at 500 0 C for four hours in an air and were characterized by X-ray diffraction ...
Read More
Nano-ferrites of the composition Mg Crx Fe2-xO4 (where x=0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were synthesized at a very low temperature (180°C) by Citrate-gel auto combustion method. The as synthesized powders were sintered at 500 0 C for four hours in an air and were characterized by X-ray diffraction (XRD) which confirmed the formation of cubic spinel structure of ferrites. The crystallite size was in the range of 7 to 23nm for different compositions with the significant decrease of ~16nm in response to the increase in Cr substitution. Such low nano sized ferrites are desirable for variety of applications like, in magnetic data storage and in targeted drug delivery, etc. Morphological studies by Scanning Electron Microscopy (SEM) revealed formation of largely agglomerated, well defined nano particles of the sample. Elemental composition characterizations of the prepared samples were performed by Energy Dispersive Spectroscopy (EDS) which shows the presence of Mg, Cr, Fe and O without precipitating cations. The FTIR spectral studies at room temperature in the range of 400 to 800cm-1 showed two strong absorption bands. The high frequency band (ν1) around 600 cm -1 is attributed to the intrinsic vibrations of tetrahedral complexes and the low frequency band (ν2) around 400 cm -1 is due to octahedral complexes. The spectra showed the characteristic peaks of ferrite sample. The observed results can be explained on the basis of composition and crystal size.
Seema Sharma; Rashmi Rani; Radheshyam Rai; T. S. Natarajan
Abstract
One dimensional nanofibers of organic and inorganic materials have been used in filters, optoelectronic devices, sensors etc. It is difficult to obtain ultra fine fibers of inorganic materials having lengths in the order of millimeter as they tend to break during formation due to thermal and other mechanical ...
Read More
One dimensional nanofibers of organic and inorganic materials have been used in filters, optoelectronic devices, sensors etc. It is difficult to obtain ultra fine fibers of inorganic materials having lengths in the order of millimeter as they tend to break during formation due to thermal and other mechanical stresses. In this study, we have investigated the mechanism to prevent the defect formation and the breaking of CuO nanofibers by using optimized heat flow rates. CuO nanofibers were obtained by heat treating the poly(vinyl acetate) PVA composite fibers formed by electrospinning. The morphology and structural characteristics of prepared samples were investigated by Scanning electron microscopy, Transmission electron microscopy and X-ray diffraction. It was found that the morphology of the composite and annealed nanofibers could be influenced by the concentration of the polymer content. A lower concentration favors the formation of defects along the fiber and the number of defects reduces when the concentration is increased.
Nagaraj Basavegowda; Agnieszka Sobczak-Kupiec; Dagmara Malina; Yathirajan HS; Keerthi V R; Chandrashekar N; Salman Dinkar; Liny P
Abstract
AnchorPlant mediated synthesis of metallic nanoparticles is an increasing commercial demand due to the wide applicability in various areas such as electronics, catalysis, chemistry, energy, cosmetics and medicine. In the present investigation, synthesis of gold nanoparticles is done by using fruit extracts ...
Read More
AnchorPlant mediated synthesis of metallic nanoparticles is an increasing commercial demand due to the wide applicability in various areas such as electronics, catalysis, chemistry, energy, cosmetics and medicine. In the present investigation, synthesis of gold nanoparticles is done by using fruit extracts of Ananas comosus (L.). Nanoparticles were characterized by using UV visible absorption spectra. Their morphology, elemental composition and crystalline phase were determined by scanning electron microscopy, energy dispersive X-ray spectroscopy and selected area electron diffraction. FT-IR analysis was used to confirm the presence of gold nanoparticles in the extracts. The synthesized gold nanoparticles were generally found to be effective as antimicrobial agents against some important human pathogens like E.coli and Streptobacillus sp. which are affecting and cause diseases like food poisoning and rat-bite fever to human beings respectively.
Yasir Ali; A. S. Dhaliwal;R G Sonkawade; Vijay Kumar
Abstract
AnchorThe surface of polyaniline nanofibres is modified by silver nano particles using cyclic voltametry (CV). The surface modifications induced by silver particles are confirmed by scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and Raman spectroscopic techniques. The SEM ...
Read More
AnchorThe surface of polyaniline nanofibres is modified by silver nano particles using cyclic voltametry (CV). The surface modifications induced by silver particles are confirmed by scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and Raman spectroscopic techniques. The SEM micrographs show uniform distribution of silver particles on the surface of PANI nano fibers. Presence of silver particles was confirmed by EDX. Structural variations induced after reduction of Ag-metal particles and formation of polaron and bipolarons are studied by Raman spectroscopy.
Surender Kumar; Tukaram J. Shinde; Pramod N. Vasambekar
Abstract
Powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the spinel structure of nanocrystalline Ferrites with composition Mn1-xZnxFe2O4 (x = 0.2, 0.4, 0.6 and 0.8) prepared by oxalate coprecipitation technique and followed by microwave heating ...
Read More
Powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the spinel structure of nanocrystalline Ferrites with composition Mn1-xZnxFe2O4 (x = 0.2, 0.4, 0.6 and 0.8) prepared by oxalate coprecipitation technique and followed by microwave heating of precursors. Effect of composition on the lattice constant, x-ray density, crystallite size was studied. Crystallite size and x-ray density increases with increase in Zinc content. The face centered cubic spinel structure has undergone deviation from ideality. A correlation exists between splitting of infrared absorption bands and lowering of composition dependent crystalline symmetry. This preparation technique could be used for synthesis of materials which use microwave transparent precursors.