Authors

Abstract

We report a novel cathode of the molecular formula, Li2MZrO4 (M = Fe, Mn), based on an inexpensive, earth-abundant, and eco-friendly materials, which have theoretical capacities within 119 – 238 mAh.g -1 depending on the number of lithium ions extracted from material, suitable for high power rechargeable lithium-ion battery. X-ray diffraction (XRD) revealed tetragonal crystal structure of the synthesized material. SEM images illustrate the formation of porous material with large surface area.  The cyclic voltammograms of Li2MZrO4 (M=Fe, Mn) showed only one pair of redox peak corresponding to the anodic and cathodic reactions within a potential window of 2.2 – 4.5 volts vs. Li/Li + . The first discharge capacities were 89 mAhg -1 for Li2FeZrO4, whereas in case of Li2MnZrO4 it was 94 mAhg -1 at 0.1 C rates, which are equivalent to removal of one lithium ion from the compounds.

Keywords