Nanomaterials & Nanotechnology
Ryan M Lumod; Khia Jane D Avila; Rolen Brian P Rivera; Miceh Rose A Magdadaro; Noel Lito B Sayson; Felmer S Latayada; Gerard G Dumancas; Rey Y Capangpangan; Arnold C Alguno
Abstract
Gold nanoparticles (AuNPs) have wide-ranging applications across scientific disciplines and industries. However, its conventional synthesis methods pose environmental and health risks, prompting the rise of green chemistry for sustainable and eco-friendly nanoparticle production. Plant extracts rich ...
Read More
Gold nanoparticles (AuNPs) have wide-ranging applications across scientific disciplines and industries. However, its conventional synthesis methods pose environmental and health risks, prompting the rise of green chemistry for sustainable and eco-friendly nanoparticle production. Plant extracts rich in bioactive compounds capable of reducing and capping nanoparticles have emerged as promising alternatives. Among these sources, Aloe vera, renowned for its diverse phytochemicals, presents an attractive avenue for nanoparticle synthesis devoid of hazardous reagents. This study delves into the one-step green synthesis of AuNPs employing aloe vera extract and examines their antibacterial efficacy against Gram-positive and Gram-negative bacteria. The synthesized AuNPs exhibited a reddish-purple color with localized surface plasmon resonance peaks at 529 nm, 535 nm, and 541 nm, corresponding to varying gold precursor concentrations (0.1 mM, 0.3 mM, and 0.5 mM). FTIR analysis confirmed the presence of bioactive compounds involved in the reduction and capping of AuNPs. Characterization via Transmission Electron Microscopy showed spherical AuNPs ranging from 10 nm to 39 nm in diameter, with stability indicated by zeta potential values of -37.3 mV, -28.7 mV, and -24.7 mV for the respective concentrations. Notably, AV-AuNPs demonstrated significant antibacterial activity, with inhibition zones of 34 mm against E. coli and 18 mm against B. subtilis, attributed to their ability to penetrate bacterial membranes and induce cell lysis.

Nanomaterials & Nanotechnology
Pramod Kumar Yadawa; Navin Chaurasiya; Sachin Rai
Abstract
All the elastic, mechanical and thermal properties of Gd-doped ZnO nanorods (NRs) have studied using interaction potential model. Gd-doped ZnO nanorods are hexagonal wurtzite structure. The characteristic features of elastic characteristics of Gd-doped ZnO NRs imply that this is mechanically stable. ...
Read More
All the elastic, mechanical and thermal properties of Gd-doped ZnO nanorods (NRs) have studied using interaction potential model. Gd-doped ZnO nanorods are hexagonal wurtzite structure. The characteristic features of elastic characteristics of Gd-doped ZnO NRs imply that this is mechanically stable. For mechanical characterization, bulk modulus (B), shear modulus (G), Young's modulus (Y), Pugh's ratio (B / G), Poisson’s ratio and anisotropic index are evaluated using second order elastic constants. For the investigation of anisotropic behaviour and thermophysical properties, ultrasonic velocities and thermal relaxation time have been also calculated along with different orientations from the unique axis of the crystal. The mechanical properties of the Gd-doped ZnO nanorods are better than at 6% Gd amount due to minimum attenuation. The obtained results are analyzed to explore the characteristic of ZnO nanorods. Computed elastic, ultrasonic and thermal properties are correlated to evaluate the microstructural behaviour of the materials useful for industrial applications