Editorial
Environmental & Green Materials
Ashutosh Tiwari
Abstract
Climate change has made the human ecosystem uncertain. The eco-adaptation is contributing significantly to a progressive shift in the entire geographical region until and unless it reaches an equilibrium stage. It is critical to support innovative, cleaner public transportation and decarbonization in ...
Read More
Climate change has made the human ecosystem uncertain. The eco-adaptation is contributing significantly to a progressive shift in the entire geographical region until and unless it reaches an equilibrium stage. It is critical to support innovative, cleaner public transportation and decarbonization in the carbon industries to create a sustainable world. Global organizations are developing strategies and agendas to contribute to the Sustainable Development Goals in various ways. The economic growth and well-being of the people require an understanding of the one world-one climate concept, and this in turn necessitates basic information for climate rejuvenation strategies in contemporary society.

Research Article
Polymer Composite
Daily Maria Gallegos; Denis Mayta; Gerhard Paúl Rodriguez; Fredy Alberto Huaman; Fernando Alonso Cuzziramos
Abstract
The effect of the addition of alpaca fibers on the mechanical response of geopolymeric mortars was studied using uniaxial compression tests. The studied mortars were manufactured by mixing mining tailings, fine sand and variable percentages of alpaca wool fibers. The mechanical results show a higher ...
Read More
The effect of the addition of alpaca fibers on the mechanical response of geopolymeric mortars was studied using uniaxial compression tests. The studied mortars were manufactured by mixing mining tailings, fine sand and variable percentages of alpaca wool fibers. The mechanical results show a higher degree of deformation, up to 6%, for the mortar mixtures with higher amounts of wool fiber in their composition, that is, the decrease in maximum compressive strength was demonstrated as the volume increased of added fibers, the values were from 32 to 9 MPa for samples with 0 and 8 % Vol. of added fibers, respectively. On the other hand, studies of the real density and the average porosity were carried out, obtaining values of 2.59 g/cm3 and 31 %, respectively. Additionally, the morphological analysis was carried out using microscopy in which a continuous binder geopolymer phase could be seen and within this phase a phase of sand and fibers.

Research Article
Nanomaterials & Nanotechnology
Nizam Solangi; Sorath Solangi; Gul Naz; Ghulam Murtaza Mastoi
Abstract
A compact and intimate interfacial contact between the modified film and the conducting electrode is crucial for electrochemical biosensors. The direct drop-casting of nanomaterials onto the working electrode often fails to construct a compact interfacial arrangement, which results in sluggish electrode ...
Read More
A compact and intimate interfacial contact between the modified film and the conducting electrode is crucial for electrochemical biosensors. The direct drop-casting of nanomaterials onto the working electrode often fails to construct a compact interfacial arrangement, which results in sluggish electrode kinetics. Here, we describe a simple and cost-effective strategy to produce CuO nanostructure using a modified hydrothermal route. The in-situ growth allowed the formation of a highly ordered interconnected network of sharp flakes configured in the form of large spheres with excellent ITO surface coverage. The CuO nanostructures were highly electrochemically active toward the oxidation of β–adrenergic agonists, i.e., formoterol fumarate (FF). The analytical ability was studied by comparison of the electrochemical behavior of ITO based electrode with its glassy carbon electrode counterpart. The binder-less CuO-based ITO electrode successfully determined FF with a detection window of 0.01 µM to 0.46 µM with practical application for real broiler feed samples collected from the local poultry farms in Hyderabad, Pakistan.

Research Article
Composite Materials
Klaudia Hurtukova; Nikola Slepičková Kasálková; Dominik Fajstavr; Anna Kutová; Petr Slepička
Abstract
In this study, we prepared hybrid materials with C and Ag layers on the surface of polydimethylsiloxane polymer (PDMS). The prepared samples were subjected to thermal treatment and modification with high energy KrF excimer laser in single shot mode. The change in the surface morphology of the samples ...
Read More
In this study, we prepared hybrid materials with C and Ag layers on the surface of polydimethylsiloxane polymer (PDMS). The prepared samples were subjected to thermal treatment and modification with high energy KrF excimer laser in single shot mode. The change in the surface morphology of the samples was investigated by Scanning Electron Microscopy (SEM), and the chemical composition of the prepared nanocomposites was studied by Energy Dispersive Spectroscopy (EDS). Finally, the samples were tested for antibacterial activity using two bacterial strains of Gram-positive S. epidermidis and Gram-negative E.coli. Antibacterial properties were observed on the prepared samples in both bacteria colonies.

Research Article
Composite Materials
Anna Kutová; Ondřej Kvítek; Klaudia Hurtuková; Václav Švorčík
Abstract
Nowadays, new materials for the preparation of synthetic bone grafts are being sought after. Bones consist mainly of collagen fibres and hydroxyapatite crystals, so using synthetic grafts with a similar structure is logical. Therefore, a composite material was prepared by adding hydroxyapatite particles ...
Read More
Nowadays, new materials for the preparation of synthetic bone grafts are being sought after. Bones consist mainly of collagen fibres and hydroxyapatite crystals, so using synthetic grafts with a similar structure is logical. Therefore, a composite material was prepared by adding hydroxyapatite particles in the cultivation medium of bacterial nanocellulose (in-situ method). The composites were dried via air-drying and lyophilization to obtain solid materials. The formation of the composite was confirmed by infrared spectroscopy, which showed cellulose (OH vibrations) as well as hydroxyapatite (PO43- vibrations) absorption bands. Energy dispersive X-ray spectroscopy showed presence of 14 wt% of calcium and 48 wt% of phosphorus in the composites. The structure of the hydroxyapatite crystals embedded in fibrous cellulose was observed by scanning electron microscopy. The higher porosity of the lyophilized samples was confirmed as well. Water contact angle of the air-dried composites was lower (25 ± 3.6)° compared to pure bacterial nanocellulose (30 ± 2.7)°. The mechanical strength of the air-dried composites was (20.3 ± 7.9) MPa. These results suggest the prepared material is promising for construction of synthetic bone grafts.

Research Article
Carbon Materials and Technology
Elguja Kutelia; Kusman Dossumov; Gaukhar Yergasiyeva; David Gventsadze; Nikoloz Jalabadze; Teimuraz Dzigrashvili; Lili Nadaraia; Olga Tsurtsumia; Manshuk Mambetova
Abstract
This study first demonstrated the possibility of the production of catalyst supports in the form of granules and tablets composed of nanoparticles of Fe atom cluster-doped CNTs using mini-mold forming and spark plasma sintering (SPS) techniques respectively. The pilot samples of the novel catalyst system ...
Read More
This study first demonstrated the possibility of the production of catalyst supports in the form of granules and tablets composed of nanoparticles of Fe atom cluster-doped CNTs using mini-mold forming and spark plasma sintering (SPS) techniques respectively. The pilot samples of the novel catalyst system containing 3% NiO active phase, synthesized on the granulated Fe cluster-doped CNTs carrier, were tested to determine their catalytic activity and coking resistance in the DRM reaction, in a wide range of temperatures up to 900oC. The developed novel catalyst systems’ samples were characterized before and after the catalyst reaction using SEM, EDX, XRD, and AES methods. It is shown that the temperature dependence of the catalytic activity of the 3% NiO catalyst, supported on the granulated Fe cluster-doped CNTs carrier, revealed two characteristic temperature ranges with different rates of efficiency. Particularly, at high reaction temperatures, starting from 700oC, the conversion rates of methane and carbon dioxide (42.4% and 45.6% respectively) have more than doubled at 850oC. Starting from 850oC to 900oC the latter tends to exceed the carbon dioxide conversion rate, and at 900oC it amounts to 95%.
