M. Devika; N. Koteeswara Reddy; V. Jayaram; K. P. J. Reddy
Abstract
In this article the sustainability of ZnO nanostructures under dynamic shock waves has been investigated. ZnO nanorods were synthesized on stainless steel (SS) substrates and exposed to shock waves in an inert atmosphere. The impact of shock waves on physical properties of ZnO nanostructures was analyzed. ...
Read More
In this article the sustainability of ZnO nanostructures under dynamic shock waves has been investigated. ZnO nanorods were synthesized on stainless steel (SS) substrates and exposed to shock waves in an inert atmosphere. The impact of shock waves on physical properties of ZnO nanostructures was analyzed. ZnO nanostructures grown on SS substrates exhibit excellent sustainability over different shock waves generated temperatures and pressures. The crystal structure and surface morphology of shock waves treated ZnO nanorods remain the same as untreated ones and however, the chemical stoichiometry and light emission properties are significantly changed. From these investigations it is emphasized that ZnO nanostructures could be adopted for various applications in space engineering technology where the surrounding temperature and pressure is below 8000 K and 2 MPa.
Promod Kumar; M. M. Ahmad
Abstract
Gold nanoclusters embedded in titania (TiO2) matrix were synthesized by thermal spray method followed by thermal annealing in an inert atmosphere. The effect of annealing temperature on the plasmonic response and optical properties of gold nanocluster in titanium dioxide matrices have been investigated ...
Read More
Gold nanoclusters embedded in titania (TiO2) matrix were synthesized by thermal spray method followed by thermal annealing in an inert atmosphere. The effect of annealing temperature on the plasmonic response and optical properties of gold nanocluster in titanium dioxide matrices have been investigated by using UV-visible absorption spectroscopy. The surface plasmon resonance (SPR) at metal-dielectric interface for gold nanoparticles has been observed for as deposited samples at 561.8 nm which degrade as a function of post annealing temperature. Field emission scanning electron micrographs confirm the presence of spherical nanoparticles whose size increases with post annealing temperature. The plasmonic resonance of noble metals at nanoscale is fundamentally and technologically important for light trapping photovoltaic and other applications.