In this article the sustainability of ZnO nanostructures under dynamic shock waves has been investigated. ZnO nanorods were synthesized on stainless steel (SS) substrates and exposed to shock waves in an inert atmosphere. The impact of shock waves on physical properties of ZnO nanostructures was analyzed. ZnO nanostructures grown on SS substrates exhibit excellent sustainability over different shock waves generated temperatures and pressures. The crystal structure and surface morphology of shock waves treated ZnO nanorods remain the same as untreated ones and however, the chemical stoichiometry and light emission properties are significantly changed. From these investigations it is emphasized that ZnO nanostructures could be adopted for various applications in space engineering technology where the surrounding temperature and pressure is below 8000 K and 2 MPa.