Nanomaterials & Nanotechnology
Kasturee Hajra; Dipak Maity; Sumit Saha
Abstract
Metal Oxide Nanoparticles (MONPs) have become an important section of nanoparticles, and these nanomaterials have been utilized in different application fields. Thus, it’s very important to understand the major and feasible synthesis methods that are involved during the production of MONPs. In ...
Read More
Metal Oxide Nanoparticles (MONPs) have become an important section of nanoparticles, and these nanomaterials have been utilized in different application fields. Thus, it’s very important to understand the major and feasible synthesis methods that are involved during the production of MONPs. In our review, we are highlighting some major processes for their synthesis and morphology. This review highlights the status, potential, challenges, and feasibility of different processes like sol-gel, CVD, thermal, flame spray, biological synthesis, and other major techniques to synthesize and their applications. Synthesis of nanomaterial through environmentally friendly and greener routes, which greatly impacts different applications, has also been studied as it has received massive attention as a sustainable, feasible, reliable, and cost-effective route in different fields. These artificially created MONPs exhibit distinct physical and chemical characteristics owing to their substantial surface area and nanoscale dimensions. Their exceptional size, shape, and structure further influence their reactivity, resilience, and diverse properties. Thanks to these attributes, they find wide-ranging uses in commercial and domestic applications, such as catalysis, antimicrobial treatments, bio-sensors, electro-sensors, as well as agriculture and various other significant fields. This review paper states major applications of these MONPs have great aspects and potential in the future and will help researchers gain further insights into these fields.

Amineh Ghaderi; Yugal Agrawal;Ashutosh Tiwari; Eduardo Antunez de Mayolo; Hirak Kumar Patra; Mohsen Golabi; Onur Parlak; Rickard Gunnarsson; Raul Campos; Revuri Vishnu; Sami Elhag; Selvakumar Subramanain; Wetra Yandi; Yuan Liu
Abstract
Nanoscale theragnosis is the biomedical aspect of nanomaterials for simultaneous diagnosis and therapy. The last decade was completely devoted by the scientist to combine the advancement in nanotechnology molecular biotechnology for the development of future nanomedicine. The approach started with the ...
Read More
Nanoscale theragnosis is the biomedical aspect of nanomaterials for simultaneous diagnosis and therapy. The last decade was completely devoted by the scientist to combine the advancement in nanotechnology molecular biotechnology for the development of future nanomedicine. The approach started with the development of target-specific delivery of the cargo imaging molecule or drugs for biomedical applications. The cutting edge advantages of the nanoscale materials (e.g., large surface to volume ratio, size-shape dependent physicochemical properties and multi-functionality etc.) proved themselves as the most potential preferences to design optimal therapy for the personalized medicine. The present tutorial review will highlight the recent advances in the development on the regulation of such theragnosis system and their biomedical perspectives to act as a future nanomedicine.