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INTRODUCTION 

The particles ranging from 1 to 100nm are termed 

nanomaterials. These particles demonstrate unique 

mechanical, optical, electrical, and magnetic 

characteristics that differ from those observed in their bulk 

material. Their significance extends across various fields 

in physical, chemical, and material science. These Metal 

Oxide Nanoparticles (MONPs) are used to fabricate 

micro-electric circuits, sensors, fuel cells, catalysts, etc.  A 

series of MONPs have been synthesized, such as Titanium 

Dioxide (TiO2), Silicon Dioxide (SiO2), Nickel Oxide 

(NiO), Copper Oxide (CuO), Iron Oxide (Fe3O4 Fe2O3), 

Zinc Oxide (ZnO), etc. using different methods, and all 

these different nanomaterials exhibit different morphology 

such as spherical, triangular, star, nanowire, etc. [1]. Apart 

from morphology, they have different general 

characteristics, such as their optical activity, magnetic 

property, crystallinity, and specific surface area. Due to 

their high density and constrained size, MONPs exhibit 

notable enhancements in their physical and chemical 

properties. Consequently, comprehending the diverse 

methods of synthesizing these nanoparticles becomes 

crucial and to study their properties and applications. 

 In the realm of synthesis, various recent and advanced 

methods have emerged. Two fundamental approaches can 

be used to categorize these methods: the top-down approach 

and the bottom-up approach. The bottom-up approach 

involves using atoms and molecules as building blocks to 

synthesize intricate nanostructures. Conversely, the top-

down approach achieves the desired nanostructure with 

distinct properties by miniaturizing bulk particles [2]. 

Further categorization of these methods reveals that the top-

down approach involves milling, lithography, and 

machining, while the bottom-up approach comprises 

techniques such as CVD, vapor deposition, plasma-assisted 

deposition, liquid phase method, sol-gel method, 

electrodeposition, and others [3]. Additionally, these 

approaches can be classified as physical, chemical, or 

biological synthesis, depending on the nature, process, and 
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materials employed. Among them, biosynthesis methods 

using plant extract synthesis are particularly noteworthy as 

they aid in reducing toxic by-products [4]. This will help in 

the greener and environmental synthesis of MONPs. Due to 

these vast numbers of processes and techniques, many 

publications have been made on different synthesis methods 

and the applications of MONPs, which makes it difficult to 

cover all the methods and applications. Therefore, this 

review article aims to offer a concise and comprehensive 

overview of various fundamental strategies involved in the 

synthesis of MONPs, focusing mainly on sol-gel, co-

precipitation, flame spray, solvothermal, and biosynthesis 

methods, and their applicational advancements have also 

been discussed concerning some major MONPs. This paper 

presents a review of the widely used sol-gel method for 

synthesizing various MONPs, including TiO2, ZnO, SnO2, 

and WO3. These nanoparticles have various applications 

like energy, environment, food industry, and medicine, 

attracting scientific and commercial interest. Notably, the 

nanomaterials’ properties are size-dependent, leading to 

significant chemical and physical variations. Innovations in 

recent times have significantly enhanced the modelling and 

design of medical and biological tools and applications, 

contributing to the commercial success of nanotechnology 

in the modern world [5]. Nanomaterials possess exceptional 

electrical, mechanical, and thermal stability, surface area, as 

well as optical and magnetic properties. These enhanced 

attributes enable their utilization in various domains, 

including electrical, magnetic, optical, and electronic 

devices. Moreover, some nanomaterials can be engineered, 

as seen in TiO2, AgO, etc. They find extensive applications 

in science and technology, particularly in the biological and 

biomedical fields. The unique morphological, structural, 

and chemical properties of nanomaterials make them an 

appealing and novel choice for biomedical applications. 

Nanomaterials, nanorods, nanofibers, and other 

nanostructures offer researchers the opportunity to explore 

their applicability in various biomedical processes due to 

their size compatibility with biological molecules [6–8]. 

 This review provides a comprehensive insight into 

different NP-based applications like agricultural, anti-

microbial, sensors, therapy and diagnosis, and catalyst. A 

study of different MONPs has been done in this review, 

along with major properties affecting the applications. As 

many studies have been made in this field, it’s difficult for 

the readers to get a good insight, and this paper resolves 

this problem and will help the researchers to study for 

further advancement in the department of MONPs. 

TYPES OF METAL OXIDE 

NANOPARTICLES 

Titanium Oxide (TiO2),  a white pigment renowned for its 

remarkable brightness and high refractive index, presents 

itself as a non-combustible and odourless powder. With a 

molecular weight of 79.9 g/mol, TiO2 possesses boiling and 

melting points of 3245 K and 2116 K, respectively. These 

nanoparticles are found in two crystal structures: anatase 

and rutile. NPs with a composition of 80% anatase and 20% 

rutile, measuring 3–5 nm and at a concentration of 100 

μg/ml, produced six times more reactive oxygen species 

(ROS) than rutile alone under UV irradiation [9]. The rutile 

form of TiO2 is considered chemically inert, exhibiting high 

stability, anticorrosive properties, and strong photocatalytic 

capabilities. [10]. It provides a huge surface area for 

adsorption, making it a better element to use as a catalyst in 

catalytic reactions. These NPs can be used in semiconductor 

photocatalysis as they provide a large surface area for 

adsorption. They can also be used for photo-sensing. From 

research, titanium dioxide was found to have excellent 

properties of self-cleaning and anti-fogging, anti-fouling, 

and anti-graffiti [11] and also shows anti-bacterial 

properties under UV light irradiation [12,13]. 

 Iron oxide (Fe3O4, Fe2O3) is a chemical element found 

in the first transition series and group 8 of the periodic 

table. Various forms of iron oxides exist in nature, 

including magnetite (Fe3O4), maghemite (γ-Fe2O3), and 

hematite (α-Fe3O4), which are among the most common. 

Hematite, known by various names such as ferric oxide, 

red ochre, kidney ore, and marlite, is one of them. 

Magnetite, on the other hand, is referred to as black iron 

oxide, magnetic iron ore, loadstone, ferrous ferrite, or 

Hercules stone [14]. These iron oxides can be 

characterized by oxygen anions forming close-packed 

planes, while iron cations occupy octahedral or tetrahedral 

interstitial sites. Hematite, represented by α-Fe3O4, 

displays paramagnetic properties above its Curie 

temperature of 956 K. It exhibits weak ferromagnetism 

and undergoes a phase transition to an antiferromagnetic 

state at 260 K [15]. The magnetic characteristics of 

hematite are influenced by factors such as crystallinity, 

particle size, and the degree of cation substitution, with 

these magnetic iron oxide nanoparticles (MONPs) 

exhibiting relatively low crystallinity. Maghemite 

experiences an irreversible crystallographic transformation 

into hematite around 400°C, and its Curie temperature 

falls within the range of 820 K to 986 K. On the other 

hand, γ-Fe2O3 particles are smaller than 10 nm and display 

superparamagnetic behavior at room temperature [16]. 

 Zinc oxide (ZnO) is an inorganic compound, 

presenting itself as a white powder that does not dissolve in 

water. It naturally occurs in the Earth's crust as zincite. ZnO 

has the ability to crystallize in two forms: hexagonal 

wurtzite and cubic zincblende. The wurtzite structure is the 

most prevalent and stable under regular conditions. ZnO 

exhibits various colored emissions, including orange, blue, 

green, and red [17]. ZnO nanoparticles have a wide range of 

applications in agriculture and medicine. They can serve as 

neurotransmitters and find use in diagnosing the Central 

Nervous System. Galvanostatic cycling and cyclic 

voltammetry have been utilized to study the electrochemical 

characteristics of these nanostructured materials. 

 Copper oxide nanoparticles (CuO) exhibit a brownish-

black appearance as a powder. When exposed to high 

temperatures and hydrogen or carbon monoxide, they can 
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be reduced to metallic copper. CuO NPs possess several 

unique characteristics, such as small size, high surface area, 

biocompatibility, and significant biological and chemical 

reactivity, effectively killing bacterial cells. Moreover, these 

nanoparticles can greatly enhance the burning rate of 

homogeneous propellants, lower the pressure index, and 

serve as excellent catalysts for AP composite propellants. 

Temperature, size, and morphology significantly influence 

the optical properties of CuO NPs [18]. In transmission 

spectra analysis at 400°C, the average nanoparticle size was 

determined to be 350 nm, and at 1000°C, it increased to 367 

nm, corresponding to energy values of 3.38 eV and 3.54 

eV, respectively [19]. CuO NPs exhibit magnetic properties 

that are strongly influenced by their morphology [20]. In the 

case of CuO NPs with dimensions ranging from 9 to 16 nm, 

the peak observed in zero-field cooled magnetization is 

absent. Moreover, a noticeable divergence between the 

zero-field cooled and field-cooled systems was detected, 

indicating hysteresis at room temperature [21]. 

SYNTHESIS OF METAL OXIDE 

NANOPARTICLES 

The development of nanotechnology has been propelled 

forward by significant advancements in various synthetic 

methods for tailoring nanomaterials with specific physical 

and chemical properties. Two primary synthetic 

approaches are recognized: the Top-Down approach and 

the Bottom-Up approach, each with its own merits and 

drawbacks. In the Top-Down approach (destructive 

approach), The process commences by using an 

appropriate bulk material as the initial substance. This 

bulk material is then progressively trimmed down to 

smaller molecules, which are then transformed into the 

desired nanoparticles. Conversely, the Bottom-Up 

approach (also referred to as the constructive approach) 

works in the opposite manner. Initially, nanoparticles are 

acquired through the miniaturization of materials at the 

atomic level. Then, these atomic-level nanoparticles come 

together through integration or self-assembly processes to 

form nanostructures. Further classification of the Top-

Down approach includes methods such as Milling, 

Lithography, and machining. On the other hand, the 

Bottom-Up approach encompasses techniques like CVD 

(Chemical Vapor Deposition), Vapor Deposition, Plasma-

assisted Deposition, Liquid phase method, Sol-Gel 

method, and Electrodeposition, among others [3,22]. 

 The sol-gel method exemplifies a bottom-up approach 

to synthesizing these particles. It stands out for its 

simplicity, speed, and cost-effectiveness, making it one of 

the most efficient techniques for producing compared to 

other physical and chemical methods. The production of 

high-quality MONPs stands out. Notably, this method 

offers advantages such as low processing temperature, 

material homogeneity, and the ability to form complex 

structures [23]. The performance of nanoparticles is 

significantly influenced by their shape. For instance, gold 

nanoparticles with a hemispherical shape exhibit superior 

performance compared to spherical-shaped nanoparticles 

[24]. The sol-gel method offers a versatile approach to 

preparing various MONPs such as TiO2, ZnO, SnO2, 

WO3, etc. This technique excels in controlling the shape 

and size of nanoparticles and involves five essential steps: 

(i) Hydrolysis, (ii) Polycondensation, (iii) Aging, (iv) 

Drying, and (v) Thermal decomposition. Among these 

MONPs, ZnO nanoparticles can be easily and efficiently 

prepared using the sol-gel technique. In a reported 

synthesis of ZnO nanostructures [25], two grams of zinc 

acetate dihydrate and eight grams of Sodium Hydroxide 

are utilized to prepare a sol. Distilled water is added, 

measured between 10 ml to 15 ml, using a measuring 

cylinder. The process begins by dissolving two grams of 

zinc acetate dihydrate in 15 ml of distilled water and 

separately dissolving 8 grams of sodium hydroxide in 10 

ml of distilled water, with each solution stirred for 5 

minutes. Next, the sodium hydroxide solution is slowly 

poured into the zinc acetate solution while continuously 

stirring using a magnetic stirrer for approximately 5 

minutes. Afterward, a burette containing 100 ml of ethanol 

is employed to titrate the solution drop by drop, gradually 

forming a white precipitate as the reaction progresses [25]. 

This experimental process involves a series of chemical 

reactions. When sodium hydroxide is added to the 

ethanolic solution of zinc acetate, it initiates a full 

hydrolysis process, forming a ZnO colloid. The ultimate 

product is achieved through the equilibrium established 

between hydrolysis and condensation reactions. Upon 

heating, zinc acetate undergoes hydrolysis, leading to the 

generation of acetate ions and zinc ions. The excess 

oxygen electrons present in the alcohol group then bond 

with the zinc ions, leading to the formation of ZnO 

nanopowder. As a result, the Sol-gel technique proves 

successful in obtaining high-purity ZnO nanopowder [26].  

 Lithography, a top-down approach, involves the 

process of replicating patterns from one medium to another. 

For a long time, lithography has relied on various types of 

particle beams. Among these, the electron source stands out 

due to its remarkable diffraction-limited resolution, 

allowing for the transfer of nanometer-scale patterns. 

Electron beams have recently gained popularity for creating 

nanoscale structures through direct writing and projection 

printing methods. In the semiconductor industry, Electron 

Beam Lithography (EBL) has evolved into a widely 

adopted method for creating master masks and reticules 

based on computer-aided design (CAD) files [7]. These 

masks are extensively used in optical projection printing to 

reproduce patterns on silicon wafers. Moreover, EBL has 

extended its applications to direct writing, where a focused 

electron beam directly interacts with the resist to perform 

various tasks. The principle behind Electron Beam 

Lithography is straightforward. This process entails aiming 

a focused beam of electrons onto a substrate that is coated 

with an electron-sensitive material. The solubility properties 

of this material alter according to the energy imparted by 

the electron beam. A typical Electron Beam Lithography 
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system bears a close resemblance to a scanning electron 

microscope (SEM). It consists of a chamber, electron gun, 

and column, all maintained under high vacuum conditions. 

The column houses electron-optical elements responsible 

for generating, accelerating, turning on/off, and focusing/ 

deflecting the electron beam. [30]. 

 Electron-beam lithography (EBL) offers several key 

advantages over conventional photolithography techniques, 

notably its exceptional resolution and flexibility in pattern 

formation. EBL employs two distinct approaches: 

projection printing and direct writing. EBL has achieved an 

impressive resolution capability, with reported values as 

low as sub 10 nm [1]. This level of precision is sufficient to 

meet the demands of most feature sizes. In the context of 

pattern transfer, EBL utilizes dry etching instead of wet 

etching, as wet etching becomes challenging when dealing 

with nanostructures. Dry etching is a subtractive approach 

that follows the replicated patterns from nanolithography. 

Additionally, the lift-off process, which occurs after metal 

deposition, adopts an additive approach. These pattern-

transferring techniques form the foundation of major 

nanofabrication methods.  

 All the reviewed methods of manufacturing MONPs 

have shown various environmental implications and 

economic challenges associated with their fabrication and 

synthesis. As a result, researchers have sought alternative 

approaches that offer environmental and economic 

advantages for NP synthesis. One particularly interesting 

alternative is the process of synthesis using plant sources as 

a biological method. This approach has proven suitable for 

producing MONPs due to its numerous health, 

environmental, economic, and medicinal benefits. This 

concept is referred to as "green nanotechnology," which 

involves using nanotechnology to improve the ecological 

sustainability of procedures, diminish or eradicate harmful 

substances, foster environmental restoration, and mitigate 

expenses and adverse environmental effects. In 

contemporary times, researchers are actively exploring the 

utilization of natural materials and substances from the 

environment as alternatives to conventional synthesis 

methods. The goal is to create biodegradable and eco-

friendly products using green synthesis techniques. 

Although conventional methods can yield large quantities 

of nanoparticles with desired properties, they are often 

intricate and expensive. In contrast, green synthesis offers 

several advantages, such as rapid production, simplicity, 

cost-effectiveness, and minimal waste generation. These 

methods utilize biological agents like enzymes, fungi, 

microorganisms, plants, or plant extracts as eco-friendly 

substitutes for chemical and physical methods in the 

synthesis of nanoparticles. As a result, biological methods 

have been recommended as more sustainable and 

environmentally conscious alternatives to traditional 

approaches. Zinc oxide nanoparticles (ZnO NPs) 

synthesized using plant extracts demonstrate remarkable 

antimicrobial properties against human pathogens, 

effectively combating bacterial and fungal infections [27]. 

Several plant species, including Trifolium, Justicia 

adhatoda, Physalis alkekengi L, Cassia auriculata, pretense 

flowers, Aloe barbadensis, Pongamia pinnata, Limonia 

acidissima, Plectranthus amboinicus, Cochlospermum 

religiosum, Sedum alfredii Hence, Aspidoterys cordata, and 

Bauhinia racemosa, have been identified as excellent 

sources for producing these nanoparticles [28]. Table 1 

presents a comprehensive summary of the essential 

characteristics of these MONPs, encompassing their 

appearance, structure, size, major applications, as well as 

their advantages and disadvantages. 

Table 1. Method of MONP synthesis, their morphology, size, shape and their advantages and disadvantages. 

MONP Method of Synthesis/Reaction  

Conditions (Temperature, pH, Time) 

Morphology/Shape/Size Advantages Disadvantages Ref. 

Physical Approach 

PtO2 Electron Beam Lithography/ Temp.- 300 oC/ 

pH- 7-11/ Time- 70-80 min. 

Sphere and Rods/45-50nm Well controlled interparticle 

spacing 

Requires expensive and 

high-quality machines 

[29] 

Fe3O4 Deposition of gas phase/Temp.- 400 oC/  

pH- 5-6/ /Time- 120 min. 

Irregular Sphere / 20-50nm Easy to Execute Size Control is Difficult [30] 

TiO2 Laser Ablation/Temp.- 550-600 oC/ pH- 7-11/ 

Time- 15-20 min. 

Amorphous sphere/ 

10-50nm 

High Purity of NPs produced High Pressure and 

conditions needed 

[31] 

ZnO Ball Milling/Temp.- 60-70 oC/ pH- 6/  

Time- 60-120 min. 

Irregular shape/2-20nm Inexpensive and easy process NPs have crystal defects 

and have contaminations 

[32] 

Chemical Approach 

ZnO Sol-Gel Method/Temp.- 400 oC/ pH- 7-11/ 

Time- 180min. 

Spheres, irregular, porous, 

Spindles/ 81.28-84.98nm 

Precisely controlled in size Weak Bonding, High 

permeability 

[33] 

[34] 

Fe2O3 Oxidation/Temp.- 150-200 oC/ pH- 9/  

Time- 15-30 min. 

Irregular elongated, small 

spheres/ 50-100nm 

Uniform size Ferrite colloids of small 

size 

[35], 

[36] 

Fe3O4 Co-precipitation/Temp.- 140 oC/ pH- 8-9/ 

Time- 120 min. 

Spheres/ 90-95nm Simple and effective Inappropriate for synthesis of 

high untainted particles 

[37]  

[6] 

ZnO Electrochemical/Temp.- 400 oC/ pH- 7-9/ 

Time- 80-120 min. 

Spherical NPs, nanorods/ 

5-40nm 

Controllable particle size Inability to reproduce [33] 

TiO2 Solvothermal/Temp.- 500 oC/ pH- 10/ 

Time- 160 min. 

Elongated, Compact/ 

~100nm 

Particle size and shapes easily 

controllable 

High pressure and 

temperature needed 

[29] 

Biological Approach 

AgO Microbial Incubation/Temp.- 150-100 oC/ 

Time- Many day 

Small platelets, spherical or 

rod like spheres/41-62nm 

Good reproducibility and 

scalability, high yield & low cost 

Slow and laborious [38, 

39,40] 

ZnO Via Plants/Temp.- 120 oC/ pH- 5-7 /  

Time- 10-15 days 

Spherical, small/15 – 40nm Better antimicrobial potential  Slow process [41] 

[42] 

CuO Via algae/Temp.- NA / pH- 7-11/  

Time- 2-3 days. 

Spherical and elongated/ 

5-45 nm 

High Yield and Low Cost Slow Process [43] 
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 Various methods are employed to prepare MONPs 

with suitable surface chemistry, as depicted in the 

graphical abstract, including both chemical and physical 

approaches. Table 1 provides a detailed comparison of 

these synthesis methods, aiming to assist researchers in 

selecting the most appropriate technique for their needs. In 

summary, there are three main methods for synthesizing 

MONPs: 

1.  Top-down (physical) methods: These procedures are 

intricate and have limitations in controlling particle 

size within the nanometer range. 

2.  Bottom-up (chemical) methods: These approaches are 

simple, manageable, and efficient, allowing control 

over the size, composition, and shape of the 

nanoparticles. The factors that influence the size, 

shape, and composition of nanoparticles (NPs) 

generated by chemical methods include the type of 

salt utilized, pH level, and ionic strength. 

3.  Biological methods: These methods involve green and 

environmentally friendly fabrication approaches. 

 Among these techniques, chemical synthesis methods 

are predominantly preferred because of their cost-

effectiveness and high production yield. 

APPLICATIONS OF METAL OXIDE 

NANOPARTICLES 

MONPs find diverse applications in various fields, 

including the fabrication of micro-electric circuits, 

sensors, fuel cells, catalysts, and more. Their unique 

properties, distinct from their bulk counterparts, open up 

new opportunities in agriculture, medicine, 

pharmaceuticals, environmental management, and food 

security through nanobiotechnology (NBT) approaches 

[44,45]. These applications are of significant importance 

in the current scenario. Recognizing the significance of 

MONPs as essential technological materials, the authors 

of this review present a comprehensive examination of 

research on these nanoparticles. They cover various 

aspects, including synthetic strategies and techniques, 

nanoscale physicochemical properties, and specific 

industrial applications across different fields of applied 

nanotechnology. This review article emphasizes the 

importance of MNOPs as a highly promising material for 

various applications. The specific role of Fe3O4, Fe2O3, 

TiO2, MnO, ZrO, CoO, and NiO nanoparticles is 

thoroughly discussed. Nanomaterials have also found 

widespread use in diverse scientific fields, particularly in 

biological and biomedical applications. The alterations in 

their morphological, structural, and chemical properties 

make them a distinctive and innovative option for 

biomedical purposes. Overall, this paper comprehensively 

reviews the different applications of MNOPs across 

various fields. 

Sensors 

Sensors play a vital role in preventing and alerting against 

various incidents, such as fire explosions, atmospheric 

environmental testing, and detecting poisonous and 

harmful gases during industrial production. The 

incorporation of Nanomaterials has led to significant 

advancements in sensor design, enabling miniaturization, 

portability, and rapid signal response times. MONPs have 

been particularly influential in sensor applications due to 

their versatility in shape production, high extinction 

coefficients, surface functionalization capabilities, and the 

inclusion of noble metal nanoparticles. These unique 

characteristics have made MONPs widely utilized in a 

range of sensor applications. 

 

Fig. 1 Different sensing applications of MONPs and their future aspects. 

 Fig. 1 depicts the recent main applications and future 

research directions concerning sensors, with a particular 

focus on the role of  MONPs as sensing elements. Metal 

oxides find widespread use in gas sensing applications, 

with their technology extending to various industrial 

sectors and domestic environments. Key examples include 
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their application in the automotive industry, indoor air 

quality control, and greenhouse gas monitoring [46]. Gas 

sensors based on carbon dioxide are indispensable in 

numerous fields, such as air quality monitoring in hospitals 

and the food industry. They serve as essential instruments 

for detecting toxic gases. Oxygen-based gas sensors, on the 

other hand, are primarily utilized in motorized industries 

and medical facilities. Ozone-based gas sensors play a vital 

role in medical applications, biotechnological processes, 

pharmaceuticals, and chemical industries. For detecting 

combustible, reducing, and oxidizing gases, sensors 

employing ZnO, TiO2, SnO/SnO2, WO3, CuO/Cu2O, and 

V2O5 are commonly used [46,47]. These sensors operate 

primarily by detecting changes in resistance as a response 

to the presence of target gases [46]. Among commercially 

used gas sensors, SnO2 and WO3 are the most common 

semiconducting metal oxides [48]. Notably, gas sensors 

based on ZnO Nanobelts exhibit higher sensitivity to NO 

gas, while ZnO tetrapods show increased sensitivity in 

detecting H2S gas. CuO-SnO2 gas sensors display 

exceptional sensitivity to H2S owing to the sulfurization 

process resulting in metallic CuS formation. In the case of 

Cu2O NCs, their electrical resistance in air (containing 5 

ppm H2S) varies at different temperatures, such as 50, 100, 

and 150°C. Upon introducing H2S, an immediate increase 

in resistance is observed. At 200°C, the Cu2O-CuO NCs 

demonstrate good response and recovery behavior, likely 

due to the thermal activation of oxygen reaction and re-

absorption at higher temperatures. 

 UV sensors/photodetectors hold great significance in 

everyday life, especially concerning sun/UV radiation 

exposure. Additionally, they find essential applications in 

diverse fields like environmental safety, medicine, military 

defense, flame detection, environmental sensors, and even 

space exploration [49,50]. TiO2 has emerged as a 

promising option instead of the generally used silicon-

based UV sensors due to its high photoactivity and stability 

under UV irradiation, attributed to its bandgap. 

Furthermore, nanostructures play a crucial role in 

biosensors. A biosensor is a sensing device consisting of a 

signal detection transducer and a biologically sensitive and 

selective component, commonly known as a bio receptor. 

ZnO is extensively utilized as a biosensor, finding its 

applications in DNA immobilization, glucose level 

detection, etc. Extensive research has been conducted on 

ZnO for its potential application in glucose detection, 

biomarker detection, and even cancer diagnosis [51]. ZnO 

has been extensively researched for its application in 

glucose detection, making it one of the most studied 

biosensors. TiO2-based sensors, on the other hand, are 

employed for H2O2 detection in microspheres [52] or 

macro-mesoporous films [53]. These materials exhibit 

numerous advantageous properties, including high surface 

area, biocompatibility, non-toxicity, excellent chemical 

stability, and catalytic activity. Due to its versatility, SnO2 

is employed in various applications, such as light energy 

conversion, biosensors, smart windows, and 

electrochemistry. Cholesterol biosensors are specifically 

utilized to estimate cholesterol concentration in 

serum/blood samples. The data presented in Table 2 shows 

that MONPs have wide-ranging sensing capabilities for 

various classes of analytes. These encompass a wide range 

of biomolecules, including dopamine, uric acid, serotonin, 

glucose, and L-cysteine; pharmaceutical drugs such as 

olanzapine, salbutamol, and chlorhexidine digluconate; 

heavy metal ions like lead, zinc, and cadmium; 

organophosphate insecticides like methyl parathion; 

antioxidants like glutathione; as well as various other 

molecules like hydrogen peroxide, hydrazine, catechol, 

hydroquinone, nonylphenol, hydroxylamine, and nitrates, 

among others (Fig. 2). 

   

Fig. 2. MONPs as sensing element: (a) Figure illustrating a chemical sensor analyte interacting with the sensing material, changing some of its physical 

properties, (b) Mechanism of MONPs as a Sensing element in electrochemical sensors. 
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Table 2. Nanoparticles as efficient electrode modifiers in various electrochemical and bio sensing systems. 

MONPs Size/Morphology and Shape Modified Electrode Real Samples/ analytes Sensitivity and Detection limit Ref. 

Fe3O4 16.7 nm/spherical GOx/NH2-, Fe@Au/Au Blood Serum/ Glucose 0.057 μA/mM and 510 μM  

[54] 

[55] 
[56] 

[57] 

10-20 nm/cubic Fe3O4/PPy/GO/GCE Tap Water/ Hydrazine 449.7 𝜇A/mMcm2 and 1.4 𝜇M 

60 nm/spherical Fe3O4/rGO/GCE Human Urine/ Dopamine 19.75 𝜇AmM−1cm−2 and 5 nM 

30 nm/sheets Bi/Fe2O3/G/GCE Tap Water/ Lead, Zinc, 

Cadmium 
5.31 𝜇AmM−1 cm−2 and  

Pb:0.07 μgL−1, Zn:0.11 μgL−1,  
Cd:0.8 μgL−1 

TiO2 50 nm/dandelion TiO2-GSE Blood sample/ Arsenic 82.6 μA μM−1 and 10 μg L−1 

[58] 

[59] 

[60] 
[61] 

267.8 nm/microsphere Ag-TiO2 electrode Apple juice, green tea, 

industrial effluent/Catechol 

0.0249 μM−1 

110 nm/nanotube array TiO2/AuNTAS Tap water and sea Water/ 

Bisphenol (Without UV 

radiation) 

2.8 μAμM−1cm−2 and  

1.0 × 107 – 2.89 × 10−5 M 

43nm/Spherical GO/TiO2AS/ONPr/GC Cyanide 165.5 nAnM−1cm−2 and 0.1 μM 

MgO 30-50 nm/hexagonal Cu/MnO2/MWCNTs/GCE Human blood/ Glucose 1302 𝜇A mM−1cm−2 and 1.7 μM  

[62] 

[63] 
[63] 

[64] 

85-90 nm/ Spherical MnO2-rGO/GCE Spiked water 

Samples/4-nitrophenol 

569.2 𝜇A mM−1cm−2 and 10 nM 

NA/ Elongated tubes Mn2O3/Nf/GCE Disinfectants/ H2O2 NA and 0.07 μM 

300 nm/ thin sheets MNPs/ MWFNTs–

GS/GCE 

Disinfector 

Samples/ H2O2 

206.3 𝜇A mM−1cm−2 and 0.8μM  

CoO 10-20 nm/octahedral CuCo2O4/GCE River water, photographic 
Solution/ Hydrazine 

1.27 𝜇A/𝜇Mcm2 and 8 nM 
[65] 
[66] 

[67] 
11 nm/ pellets NiCo2O4/NF Tap water, lake water/Hg(II) 29.8 𝜇A/𝜇M and 0.0099 𝜇M 

5-500 nm/Hollow nanospheres NiCo2O4/rGO/GCE Human Blood/ Glucose 2082.57 𝜇A/mMcm2 and 0.7𝜇M 

NiO 81.28-84.98nm/Irregular spindle NiO@PPy/Au/GCE Human Blood/ Glucose 802.9 𝜇A mM−1cm−2 and 0.15𝜇M 

[68] 

[69] 

[70] 

35-40nm/Spherical NiONP–DNA/GCE Serum samples/Glucose 7292.69 𝜇A/mMcm2 and 0.017 𝜇M 

81.28-84.98nm /Irregular 

spindle 

NiONPs-CBDHP/GCE Pharmaceuticals, synthetic 

biological fluids/ Paracetamol 
NA and 0.12 𝜇M 

25-42 nm/ irregular sphere NiOxNPs/GCE Fruit juice, non-alcoholic 
Beverage/ NADH 

0.052 𝜇A𝜇M−1 and 106 nM 

Catalyst 

MONPs play a crucial role in catalytic applications. 

Among various catalysts, nanocatalysts derived from 

MONPs are present. Due to their remarkable surface area, 

robustness, and stability, these materials serve as excellent 

alternatives to conventional nanocatalysts [71]. The 

intrinsic properties of MONPs are highlighted in Fig. 3. 

Nanocatalysts, being nano-sized, provide a greater number 

of active surfaces compared to bulk catalysts, leading to 

more efficient contact between the reactants and catalysts. 

This increased surface area and higher number of active 

sites facilitate faster reactions and improve product yield 

[72]. Furthermore, the insolubility of these catalysts in the 

reaction mixture offers the benefit of easy separation and 

reusability of the nanocatalysts [73]. 

 

Fig. 3. Intrinsic properties of MONPs depending upon various shapes, 

sizes, and morphology of MONPs. 

 Nano-sized Fe and Co powders, with a particle size 

range of about 10 to 50 nm, find application as catalysts in 

slurry reactors for the production of green diesel through 

Fischer-Tropsch Synthesis (FTS). This application 

improves the FTS technology by enhancing its capability 

to produce high molecular weight waxes, which can be 

further hydrocracked to produce liquid fuels. Additionally, 

it boosts the efficiency of both slurry and fixed-bed 

reactors employed in FTS from bio syngas, resulting in the 

generation of long, linear-chain paraffin waxes in fixed-bed 

and slurry FTS reactors. In another context, nanoparticles 

of NiO are utilized as catalysts, supported by Al2O3, to 

produce high-quality syngas through the gasification of 

biomass. The presence of Al2O3 as a support for the NiO 

catalyst aids in reducing tar yield and increasing overall 

efficiency to an impressive 99%. As a consequence of this 

improvement, gas yield is substantially increased, with 

elevated proportions of H2 and CO in the syngas 

composition. Simultaneously, the percentages of heavier 

fractions such as CH4 and CO are reduced, resulting in an 

enhanced quality of the syngas produced. Silver 

nanoparticles hold significant importance due to their 

diverse applications in catalysis, organic transformations, 

fine chemical synthesis, and organic intermediate 

production. The utilization of Ag NPs offers several 

advantages, such as avoiding the need for ligands and 

enabling easy separation of catalysts, making the product 

heterogeneous and cost-effective. These nanoparticles 

possess a large surface area, leading to excellent catalytic 

activity for certain reactions. Consequently, researchers 
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have directed their attention towards exploring the catalytic 

potential of Ag nanoparticles [74]. Recent progress in 

materials science and nanotechnology has led to 

remarkable advancements in the precise fabrication of 

MONPs, allowing for the creation of nanoparticles with 

different shapes, sizes, and compositions. Additionally, the 

capacity to alter their design and morphology through 

colloidal science facilitates the creation of catalysts with 

increased active sites. These advancements act as a crucial 

link connecting materials with their applications as 

heterogeneous catalysts, opening up new avenues for 

innovative catalytic approaches. The scientific debate was 

initiated when Haruta and Hutchings conducted a study on 

The catalytic performance of carbon monoxide (CO) when 

exposed to gold nanoparticles supported on a metal oxide. 

Their research shed light on the significance of 

approximately 1–3 nm sub-nanometer clusters and 

nanoparticles in catalyzing CO oxidation reactions, which 

greatly influenced the overall catalytic performance. 

Haruta and his team investigated different approaches to 

optimize particle size, and they discovered that 3 nm gold 

nanoparticles were especially effective for catalyzing CO 

oxidation. This intriguing perception has sparked increased 

interest in synthesizing various Au-supported 

nanoparticles, which have been widely adopted as catalysts 

for numerous catalytic applications. Recently, a diverse 

array of  MONPs has been produced to explore their 

potential in catalysis extensively. The production of eco-

friendly catalysts seems feasible and holds great promise, 

offering potential solutions to address environmental 

concerns associated with current chemical processes. 

Additionally, it could enable high-yield production of 

goods. Nevertheless, the issue of sustainable preparation of 

metal nanoparticles raises concerns about the use of 

environmentally friendly precursors and solvents. 

Intriguingly, certain studies suggest employing bio-derived 

materials like starch and various plant-based substances for 

the synthesis of eco-friendly metal nanoparticles, including 

Au, Cu, and Ag. These metal nanoparticles are then 

integrated into various substrates such as CNTs (carbon 

nanotubes) and proteins like soybeans and poly-L-lysine, 

developing bio-inspired hybrid materials. The catalytic 

properties of different MONPs employed in various fields 

are presented in Table 3. 

Table 3. Various MONPs synthesized and their catalytic properties. 

MONPs Size/Shape Starting 

Material 

Solvent/ 

Oxidant 

Products Selectivity Catalytic Property Ref. 

CoO 2-4nm/ 

Spherical 

Oefins H2O2 Epoxides 86.1% Nanocrystals coupled with CNTs as 

catalysts for chlor–alkali electrolysis 

systems 

[75] 

[76] 

Fe3O4  10-20nm/ 

Cubic  

Olefins CCl4/tBuOOH Epoxides 88% Catalytic oxidation of phenolic and 

aniline chemical compounds (Fe3O) 

[77] 

SnO2 180nm/ 

Cylindrical 

Dimethyl sulfide 

(DMS) 

NA Sulfoxide 

product 

90% Reduction and photodegradation of 

organic compounds 

[78] 

Ag2O 30-40nm/ 

Flakes 

Benzyl alcohol Acetonitrile/ 

H2O2 

Benzaldehayde 73.6% catalytic oxidation of tryptophan [79] 

[80] 

Cu2O 1-10nm/ 

Spherical 

Olefins TBHP Epoxides 100% Reduced RGO for usage as an 

efficient electrocatalyst in ORR 

[81] 

[82] 

TiO2 2-5nm/Rods Secondary 

alcohols 

PEG400/ H2O2 Ketones 90% Carbon modified NPs can be used in 

daylight photocatalysis. 

[83-85]  

ZnO 25nm/Sheets Styrene NA/ H2O2 Epoxide 

product 

75% For photoluminescence properties 

through catalytic growth 

[86] 

[87] 

MgO 70-80nm/ Formaldehyde Methanol/NA Formic Acid 35% Catalysed C2H4 hydrogenation [88,89] 

CaO Nanotubes Benzyl alcohol NA/Air Benzaldehyde 96% Nanoparticles can be catalysed with 

pyridines in an aqueous C2H5OH 

medium 

[90] 

CeO2 30-40nm/ 

Flakes 

para-xylene NA/Air Terephthalic 

acid 

83% These nanoparticles with their 

catalytic properties can be used for a 

variety of biomedical applications 

[91] 

[92] 

 

Therapy and diagnosis 

In recent years, there has been immense interest in the use 

of nanomaterials for targeted therapeutics and diagnostics. 

These nanoparticles typically fall within the size range of 

10-500 nm, and their connections with cells of mammals 

can be modified in light of the molecule size and useful 

necessity. Notwithstanding, more regular polymeric 

nanoparticles, metal, and MONPs can likewise assume a 

significant part in the identification and outside command 

over drug conveyance. In recent times, diverse types of 

nanoparticles (NPs) and drug delivery systems have been 
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designed and implemented for the treatment of cancers, 

management of diabetes, combating bacterial infections 

with antimicrobial coatings, crossing the blood-brain 

barrier, and developing vaccines (Fig. 4) [93]. 

 

 

Fig. 4. Nano-theragnostic application of MONPs in different fields like imaging, drug targeting, and cancer therapy. 

 MONPs have been customized for various 

applications, including acting as agents to enhance 

contrast in imaging and serving as vehicles for drug 

delivery. More recently, they have been explored as 

therapeutic agents to MONPs (magnetic and optically 

active nanoparticles) that can induce tumor cell death 

through magnetic and photonic ablation therapies. These 

nanoparticles offer a wide range of core materials options, 

including gold, silver, carbon nanotubes, fullerenes, MnO, 

lipids, micelles, and more. Significant attention has been 

given to Fe3O4 (magnetite) based NPs. This is primarily 

due to their exceptional properties, such as being 

superparamagnetic, biocompatible, and biodegradable. 

Fe3O4 NPs have undergone extensive research for their 

potential to enhance contrast in MRI (Magnetic Resonance 

Imaging) [94]. Recently, hybrid NP formulations have 

been modified with exterior coatings. Furthermore, useful 

tests have been contrived for their capacity to upgrade 

contrast in elective imaging procedures, notwithstanding 

MRI [95,96]. Recent research consistently highlights the 

various benefits of nanogold compared to other 

nanomaterials, mainly owing to its distinctive properties. 

The likelihood of changing the outer layer of nanogold 

particles with various focuses and the utilization of 

versatile mixtures significantly broadens the range of 

potential biomedical applications of these nanoparticles, 

with a particular emphasis on disease therapy [97,98]. 

Functionalized gold nanoparticles have been demonstrated 

due to their outstanding biocompatibility and the ability to 

control biodistribution patterns. These nanoparticles 

emerge as highly promising candidates for cutting-edge 

therapies [99]. Additionally, recent studies have indicated 

that AgO NPs show potential as nano-silver and have 

proven to be an effective antitumor agent by inhibiting 

proliferation and inducing apoptosis in cancer cells. In 

both in vivo and in vitro experiments conducted on diverse 

cancer cell lines, the physical properties of nano-silver and 

the administered doses have exhibited a satisfactory 

impact on tumors while preserving the health of 

surrounding tissues [100]. Moreover, the application of 

ZnO has seen significant advancements, particularly in 

synthesizing novel wound dressings, creating bi-metal 

"core-shell nanocomposites," puncturing bacterial cellular 

membranes, producing hydrogen peroxide, demonstrating 

high absorbency for wound exudates, and promoting 

blood clotting, among other benefits. Fe3O4 nanoparticles 

(NPs) possess magnetic properties that make them highly 

suitable for a wide range of applications, including 

magnetic separation of biological products and cells, 

diagnostics, and targeted drug delivery systems. These 

NPs also show promising potential as carriers for vaccine 

delivery, leading to improved therapeutic effects. In one 

study, Fe3O4 NPs acted as covert carriers, effectively 

delivering anti-retroviral drugs to latent HIV forms, while 

their contrasting properties enabled tracking the drug's 

localization. Additionally, Fe3O4 NPs have demonstrated 

the ability to selectively kill cancer cells while leaving 

normal cells unharmed. These NPs have been utilized in 

creating virus-like particles (VLPs) with exceptional 

applications as vaccines, gene carriers, MRI contrast 

agents, and drug delivery vectors. On the other hand, ZnO 

NPs display selective cytotoxicity towards cancer cells 

both in vitro and in vivo compared to normal cells. The 

high selectivity of ZnO nanoparticles makes them ideal 

candidates for cancer drug delivery, and their 

biodegradable characteristics further enhance their 

suitability. The Doxorubicin-ZnO nanocomplex has 

demonstrated efficiency as a drug delivery system against 

hepatocarcinoma cells, enhancing the effectiveness of 

chemotherapy by increasing the intercellular concentration 

of doxorubicin. Additionally, the role of zinc in insulin 

synthesis, storage, and secretion suggests that ZnO NPs 

could potentially be utilized as anti-diabetic agents or in 

alleviating diabetic complications when stabilized or 
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conjugated with specific substances. TiO2 nanoparticles 

are extensively used in bone and tissue engineering 

because they promote cell adhesion, osseointegration, cell 

migration, and wound healing. These nanoparticles are 

widely employed in dental and orthopedic applications 

because of their favorable biocompatibility and 

mechanical properties. A comprehensive understanding of 

all the mechanisms related to their anticancer activity is 

essential to ensure the significant impact of silver 

nanoparticles in nanomedicine and guarantee patient 

safety. Table 4 provides a summary of the major 

applications of these MONPs, encompassing their 

synthesis using various precursors and their applications in 

therapy and diagnosis. 

Table 4. Use of MONPs in therapy and diagnosis application. 

MONPs Size (nm)/Coating Concentration Application Ref. 

Fe3O4 45-48/Manganese (Mn) 5, 10, 20, 50 and 100 mg/L 
(in vitro) 

Molecular labels imaging Drug delivery/MRI 
bio-magnetic separation 

[101] [95] 

[102] [103] 

[94] [104] 43.59/Poly- (ethylene glycol) (PEG) 100 and 500 ppm Fe MRI bio-magnetic separation 

30-100/NA 1, 3 and 5 mg/mL Used in augmenting contrast for MRI 

TiO2 15 – 40/TiO2-coated silicon catheters 0.10 to 4.99 mg/m3 Biomedical implants, Photocatalytic damage [105,107] 

ZnO 81.28-84.98/ Ag and TiO2 
nanoparticles coated over ZnO 

0.4 g/L Used for Targeted drug delivery and controlled 
drug release 

[108] [96] 

[109] [96] 

[94] 79.68 - 87.35/NA NA dermato-cosmetics 

30-50/Chemically pure 20µL of exact  Used in induction of leukemic cells. 

CeO2  34 – 45/NA NA Neuroprotective agents [110] 

SiO2 10-15/NA NA dermato-cosmetics [111] 

CuO 20-22/ Polyhydroxy butyrate (PHB) 29–500 µM Used in augmenting contrast for MRI [112] [113] 

[114] [98] 

[115] [97] 

[111] 

8-40/ Cobalt 75, 150, 250, 500, 750 and 

1,000 mg/L 

Used in reducing cytotoxic effect of brain 
tumour cell 

60-90/NA 10.8, 21.6 and 108 mg/L Effective against gram-positive bacteria 

42.3/NA NA E. coli strain was more 

 

Anti-microbial 

Antimicrobial refers to the application of certain 

substances with the ability to kill or hinder the growth of a 

wide range of microorganisms, encompassing bacteria, 

viruses, protozoans, and fungi such as mold and mildew. 

Bacterial infections are particularly concerning as they can 

lead to chronic health issues and high mortality rates. 

Antibiotics are widely recognized for their effectiveness in 

treating bacterial infections [116]. The fundamental issue 

emerges from unseemly use, overuse, and misuse of the 

anti-infection agents for prophylactic and remedial reasons 

without satisfactory clinical signs, subsequently prompting 

bacterial protection from anti-microbials. NPs are 

increasingly involved more for antibacterial reasons as an 

option for anti-infection agents [117]. This infers the 

utilization of NPs in insert plates and clinical materials. 

Nanomaterials as antibacterial supplements to anti-toxins 

are profoundly encouraging and are acquiring enormous 

interest as they fill the holes where anti-toxins often fall 

flat [118].  

 In an age where bacterial resistance to traditional 

antibiotics is on the rise, nanotechnology offers a 

promising solution with nano antibiotics to combat 

pathogenic bacteria and infections. MONPs like Fe2O3 

NPs, CuO NPs, ZnO NPs, and CeO NPs, as well as their 

various metal oxide hybrids, have shown exceptional 

potential in the fight against pathogenic strains. Their 

small particle size enables prolonged attachment to 

bacterial cell walls. Through the generation of reactive 

oxygenated species (ROS), these nanoparticles puncture 

the bacterial cell wall, resulting in the leakage of 

cytoplasmic components and targeting bacterial DNA, 

ultimately leading to bacterial death (Fig. 5) [119]. 

MONPs represent a promising class of antimicrobial 

agents, and evaluating their effectiveness against typical 

bacteria is crucial. However, current testing systems are 

limited to in vitro formulation testing, often focusing on a 

single microbial species and rarely addressing multi-

species biofilms. 

 

Fig. 5. Antimicrobial activity of MO-based nanoparticles on different 
microbe cells. 
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 Fig. 6 illustrates the various proposed antimicrobial 

activities of MONPs, and Table 5 provides a summary of 

the common NPs used as antimicrobial agents. Among the 

MONPs used in this study, Among the tested 

nanoparticles, ZnO displayed the most potent 

antimicrobial activity against both positive and negative 

bacteria. ZnO NPs exhibited remarkable bactericidal 

potential, whereas Fe2O3 NPs demonstrated the least 

bactericidal activity. The effective antibacterial properties 

of ZnO nanoparticles have garnered significant global 

attention. Moreover, zinc oxide is considered a bio-safe 

material and finds applications in photocatalysis and 

photo-oxidation reactions involving biological and 

chemical species [120]. These nanoparticles find 

application in food packaging, leading to improved 

packaging performance and extended food shelf-life. 

(Antimicrobial packaging is a system designed to 

deactivate or eliminate pathogens and spoilage 

microorganisms found in foods, thereby guaranteeing the 

quality and safety of food products.) Additionally, TiO2 

has been employed to combat the transmission of various 

infectious diseases [121]. A separate investigation 

identified doped Cu/TiO2 nanoparticles incorporating a 

carbon-based allotrope-like graphene oxide as a novel 

antimicrobial agent. CuO has been utilized as an effective 

antimicrobial agent, capable of degrading various types of 

microbial species. Additionally, due to its exceptional 

chemical properties, the CuO nanoparticle complex has 

been investigated for its potential as an anticancer agent in 

biomedicine [122,123]. Silver nanoparticles (Ag 

nanoparticles) find versatile applications in biomedicine, 

such as clinical wound dressing, bio-adhesives, biofilms, 

and coating materials [124]. As a promising alternative, 

they offer effective cleaning and disinfection of equipment 

and surfaces in food-related environments [125]. From 

Table 5, we can summarize the different antimicrobial 

activities of various bacteria and microbes. 

 

Fig. 6. Antimicrobial mechanism and activity of MONPs in different 
bacterial cells through cell membrane causing cell damage generating 

ROS. 

Table 5. Antimicrobial activity of different MONPs on different microbe. 
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[128] 12, 25, 88, 142, and  
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S. aureus, Proteus vulgaris • Increased crystallinity leads to decreased ROS formation 
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18-20 nm/Spherical and 

sheet/ 10-15 mg 

E. coli and S. aureus • Difference in bacteria membrane thickness and membrane 
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• Sensitivity affects NP interactions 
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• Attachment to bacterial membranes by interacting with 

phosphate groups. 

• Causing an increase in membrane permeability 

[129] 
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Agricultural 

Nanoparticles (NPs) are receiving increasing attention in 

agricultural applications as they offer the potential to 

improve crop yield and performance while reducing waste 

and runoff. Extensive research has demonstrated their 

numerous benefits to plants, such as delivering 

micronutrients, triggering plant defense mechanisms, and 

inhibiting plant pathogens. Their sub-100 nm size enables 

greater reactivity, mobility, and uptake in the root zone of 

various crops. However, these very properties can also 

result in NP agglomeration and strong adsorption to soil 

particles [134]. For instance, nanoscale SiO2, CuO, and 

ZnO have demonstrated their capability to aid crops 

during drought conditions and mitigate heavy metal 

contamination [135,136]. ZnO nanoparticles (NPs) have 

demonstrated excellent pesticide efficiency against 

Artemia salina larvae [137]. Regarding the Arachis 

hypogaea plant, the utilization of ZnO NPs led to 

enhanced seed germination, rapid shoot growth, improved 

seedling vigor, and enhanced root development. 

Moreover, the plants exhibited faster flowering, and there 

was a noticeable increase in pod size and overall yield 

[138]. Similarly, in a study involving Solanum 

lycopersicum, ZnO NPs were observed to improve the 

germination rate and increase protein content [139]. 

Numerous studies have reported the potential of ZnO NPs 

to enhance the yield of various food crops [140]. These 

particles are also used as nano-fertilizers for plant growth 

[141].  

 Nano-fertilizers are typically applied to plants either 

through the soil, where they are taken up by the plant 

roots, or by foliar spraying. A considerable portion of the 

fertilizers used to supply additional nutrients to plants 

comprises inorganic fertilizers. These fertilizers are 

chemically synthesized and formulated with suitable 

concentrations and combinations to provide the three 

essential nutrients (nitrogen, phosphorus, and potassium - 

N, P, and K) required for various crops and growing 

conditions. Compared to conventional fertilizers, nano-

fertilizers offer several advantages. They enhance soil 

fertility, increase crop yield, and improve crop quality. 

Additionally, nano-fertilizers are non-toxic, less harmful 

to the environment and human health, and can reduce 

costs and increase profitability. Table 6 displays various 

MONPs used as nano-fertilizers to promote the growth 

and impact of different plants. It also provides information 

on the concentration of nano-fertilizers used for each 

plant. On the other hand, MONPs as Nano-pesticides are 

commonly employed in agriculture to protect plants from 

pest attacks and enhance harvest yields. Although 

pesticides are highly effective and reliable for pest and 

disease prevention, their application can lead to adverse 

effects, such as environmental pollution [142]. Numerous 

studies have indicated that applying pesticides at lower 

doses is safer; however, at such reduced levels, the 

effectiveness of pesticides is significantly compromised. 

With our current knowledge, nanotechnology, and 

innovative approaches have the potential to address the 

limitations associated with the reduced effectiveness of 

lower pesticide doses and environmental pollution. Nano 

pesticides might offer a method for controlling the 

conveyance of pesticides and accomplishing more 

noteworthy adequacy of a lot more modest portion of a 

substance. 

Table 6. Impact of MONPs as nano-fertilizers on different plants.  

MONPs as 

Nano fertilizer 

Size/Shape Plant Name Conc. (ppm) Impact on Plants Ref. 

ZnO 53.7 nm/ Hexagonal 

and pseudo-spherical 

Cucumis sativus 400-800 Increased root dry weight and fruit gluten [143] 

[144] 

[145] 

[146] 

40 nm/ Nanoflakes Brassica napus 1-2000 Root elongation 

8 nm/ Spherical A. hypogaea 1000 Pod yield per plant increased up to 34% 

30-57 nm/ Hexagonal 

crystal 

C. arietinum 1.5 Shoot dry weight and antioxidant activity improved 

20-60 nm/ Spherical Z. mays 10 Plant height and dry weight increased 

TiO2 12-15 nm/ Spherical Spinacia oleracea 0.25-4 Plant dry weight improved by 73% [147] 

8-35 nm/ Spherical V. radiata 10 Increased the plant growth and nutrient content 

20-30 nm/ Spherical V. unguiculata 125 Yield of cowpea increased up to 26-51% 

Fe/SiO2 2-10 nm/ Crystalline Hordeum vulgare 0-25 Mean germination time improved [149] 

CeO2 18 nm/ Cubic Cucumis sativus 400 Boosting content of starch and globulin [150] 

MgO 20-50 nm/ Quasi-

Spherical 

Vigna unguiculata 2.5 Shoot and root length as well as chlorophyll content 

increased 

[151] 

Fe3O4 14.7 nm/ Spherical Glycine max 30-60 Content of Chlorophyll increased [152] 

40-50 nm/ Octahedral 

Prism 

Pisum sativum 250-500 Weight of seed and chlorophyll increased [153] 

 

CuO 4.8 nm/ Spherical Zea mays 10 51% plant growth [148] 

[154] 

[155] 

[156] 

5-20 nm/ Spherical Lactuca sativa 130-600 Increased length of shoot and root 

32 nm/ Spherical Cajanus cajan L 20 Increased the length of shoot and root 

4.8 nm/ Spherical Vigna radiata L 125 Shoot and root length increased 
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 Agrochemical organizations are currently focusing on 

the process that involves reducing the particle size of 

conventional chemical emulsions to the nanoscale. 

Furthermore, research has shown that nanoparticles of 

certain metals can act as suppressants against pests and 

pathogens [157]. For instance, at a concentration of 100 

mg/kg, researchers discovered that silver nanoparticles 

effectively hindered the mycelial growth and conidial 

germination of powdery mildew fungus on cucurbits and 

pumpkins. As a result of these findings, silver 

nanoparticles have garnered significant attention as a 

promising pesticide for agricultural applications [158]. 

Table 7 shows different MONPs utilized as Nano 

pesticides and Nano formulation and their effect on the 

pests to enhance plant growth. Nanotechnology has made 

significant advancements in various agricultural 

applications, including nano-fertilizers, nano-pesticides, 

nano-biosensors, and environmental remediation agents. 

However, gaining a comprehensive understanding of the 

fate and environmental impacts of nanomaterials remains 

a major challenge in agricultural and environmental 

sciences. To address this, collaborative research among 

institutes exploring different uses of nanomaterials 

becomes crucial in developing efficient, multifunctional, 

stable, cost-effective, and environmentally friendly 

nanomaterials. Such collaborations would also aid in 

comprehending the role, fate, behavior, and ecotoxicity 

assessment of nanomaterials. While the application of 

nanomaterials may enhance the growth and yield of crop 

plants, it is essential to acknowledge that the response may 

vary depending on the plant species [167]. Consequently, 

for the commercial application of nanomaterials, it is 

imperative to conduct comprehensive investigations, 

screening, and optimization of the nanomaterials for 

different plant species to ensure both their effectiveness 

and safety. 

Table 7. Impact of MONPs as nano-pesticides to prevent plants from different pests and diseases. 

MONPs as 

Nano-Pesticides 

Size/Shape Pest/Causative Agent Plant Disease Impact on Plants Ref. 

TiO2 50 nm/ Hexagonal Tebuconazole/Rust and 

moulds 

Leaf senescence 

and decay 

Photocatalytic activity higher and 

reduction in bacterial growth. 

[159] 

SiO2 25 nm/ Spherical Validamycin/NA Leaf senescence 

and decay 

Release rate improved by 50% [160] 

CuO 5-45 nm/ Spherical Issatchenkia orientalis 

(yeast)/ Xanthomonas 

Bacterial blight in 

Punica granatum 

Bacterial growth inhibition [161] 

[162] 

ZnO 8 nm/ Spherical Salmonella typhimurium/ 

Aspergillus niger 

Disease in 

Capsicum annuum 

Growth of mycelia delayed [163] 

[164] 

Fe3O4 18 nm/ Cubic Bacteria/ B. cinerea,  

R. solani and F.oxysporum 

Fungal disease Fungal growth inhibition up 

to 60-80% 

[165] 

[42] 

AgO 30-35 nm/ 

Cylindrical 

Spaherotheca fusca/  

Xanthomonas campestris 

Bacterial blight Reduced bacterial infection  

significantly 

[166] 

23 nm/ Spherical Aphis nerii / Xanthomonas Bacterial spot disease Significantly inhibit the bacterial growth [166] 

 

CONCLUSION & FUTURE PROSPECTIVE 

In conclusion, we have provided a comprehensive summary 

of the reported synthesis routes for various MONPs 

fabrication. The synthesis procedures have been 

systematically elaborated, highlighting the advantages and 

disadvantages of physical and chemical methods, such as 

ambient temperature processing, precise control over 

texture, faster production, and cost-effectiveness. Notably, 

The discussion has covered various MONPs such as TiO2, 

ZnO, SnO2, Fe2O3, among others, along with a summary of 

materials characterization, including crystal structure, 

morphology, optical properties, bandgap, elemental 

composition, shape, size, and other relevant characteristics. 

Furthermore, we have explored the diverse roles of MONPs 

in numerous applications, including photocatalysis, 

catalysis, biosensors, gas sensors, electrochemical sensors, 

biomedical applications, therapy, diagnosis, antimicrobial, 

and agriculture. The scientific discussions and summarized 

data presented in this review are anticipated to be of great 

value to researchers worldwide who study MONPs and 

their diverse applications. 

     Currently, nanoparticles (NPs) have gained 

widespread usage and have become integral to our society 

and scientific endeavors. Nanoscience continues to 

captivate significant research attention. This review article 

effectively showcases how MNOPs significantly influence 

diverse applications that hold crucial importance for future 

developments. MONPs have emerged as vital elements in 

applied nanotechnology and are found to have applications 

in trace gas sensors, batteries, solar cells, catalysis, energy 

conversion, architecture, medicine, food, agriculture, 

cosmetics, textiles, therapy, diagnosis, and biomedicine, 

among others. However, challenges persist in the use of 

MONPs in nanotechnology. There is a need for designing 

and synthesizing novel, robust, and flexible nano-oxides 

with properties such as high sensitivity, excellent 

selectivity, reduced size, extended lifetimes, and rapid 

response. Addressing these challenges will be essential to 

further harnessing the potential of MONPs in various 

fields. Here, our focus is on some of the important 

methods for the fabrication of MONPs, and we have tried 

to figure out the most feasible, cost-effective, and 

environmentally friendly method of synthesis of MONPs. 
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Subsequently, applying eco-friendly practices has become 

increasingly indispensable for accomplishment in today's 

time, and it’s important to focus on these methods as they 

provide a wide range of applications and important trends 

in different fields. Additional attention should be given to 

the meticulous selection of nano-oxide types, 

morphologies, hierarchical structures, and the optimal 

choice of additives' composition. This approach is crucial 

for attaining superior performance in detecting specific 

environmental reductants or oxidants. This review 

includes all the important applications of MONPs that will 

help further research in different fields of agriculture, 

medicine, sensors, etc. 

Abbreviation 

MONP- Metal Oxide Nanoparticles, Go- Graphene Oxide, PPy- 

Polypyrrole, GCE-Glassy carbon electrode, rGo-reduced graphene oxide, 
G-Graphene, GSE- Gold strip Electrode, NTAS-, Nanotube Arrays, 

MNPS- Manganese Nanoparticles, MWFNTs- Multi-walled fullerenes 

nanotubes. 
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