International Association of Advanced Materials
  • Register
  • Login

Advanced Materials Letters

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 12, Issue 11
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Advisory Board

Editorial Staff

Publication Ethics

Indexing and Abstracting

Related Links

News

Spectrophotometric Determination of Curcumin after Preconcentration by Ultrasonic Assisted Supramolecular Dispersive Liquid-liquid Microextraction based on Solidification of Floating Organic Drops using Taguchi Design Method

    Ardeshir Shokrollahi Samira Hessampour

Advanced Materials Letters, 2021, Volume 12, Issue 11, Pages 1-8
10.5185/aml.2022.4167.1008

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

In this paper, the Taguchi orthogonal design was applied to optimize the extraction efficiencies for the determination of curcumin, after the separation and preconcenteration by supramolecular based-ultrasonic assisted-dispersion solidification liquid-liquid microextraction (SM-UA-DSLLME) procedure coupled with spectrophotometric UV-Vis. The experimental design consisted of six parameters (pH, amount of the extraction and disperser solvents, salt effect, sonication time and centrifuge time), each at five levels. The preconcentration method is based on the dispersion-solidification liquid-liquid microextraction of curcumin with decanoic acid/THF as the supramolecular solvent (a nano-structured liquid occurring on two scales, molecular and nano). The purpose method had two linear ranges of 0.01–0.40 and 0.40-3.50 mg L−1 of curcumin with R2= 0.9922 and 0.9799, respectively. The enrichment factors of 478.48 and 118.80 were obtained for down and up linear ranges, respectively. The preconcentration factor under consideration recovery was obtained 46. Detection limit was 5.2 µg L−1 and the relative standard deviation (RSD%), for eight replicate measurements of 0.2 mg L−1 curcumin was 2.47%. The results obtained from the analysis of variance (ANOVA), revealed that the most important effectible parameters onextraction curcumin are volume of disperser solvent and pH. The applicability of method was successfully applied to determine of trace curcumin in tablet, sewage and water samples.
Keywords:
    Curcumin Supramolecular solvent Microexraction Taguchi design method Tablet sample
  • PDF (735 K)
  • XML
(2021). Spectrophotometric Determination of Curcumin after Preconcentration by Ultrasonic Assisted Supramolecular Dispersive Liquid-liquid Microextraction based on Solidification of Floating Organic Drops using Taguchi Design Method. Advanced Materials Letters, 12(11), 1-8. doi: 10.5185/aml.2022.4167.1008
Ardeshir Shokrollahi; Samira Hessampour. "Spectrophotometric Determination of Curcumin after Preconcentration by Ultrasonic Assisted Supramolecular Dispersive Liquid-liquid Microextraction based on Solidification of Floating Organic Drops using Taguchi Design Method". Advanced Materials Letters, 12, 11, 2021, 1-8. doi: 10.5185/aml.2022.4167.1008
(2021). 'Spectrophotometric Determination of Curcumin after Preconcentration by Ultrasonic Assisted Supramolecular Dispersive Liquid-liquid Microextraction based on Solidification of Floating Organic Drops using Taguchi Design Method', Advanced Materials Letters, 12(11), pp. 1-8. doi: 10.5185/aml.2022.4167.1008
Spectrophotometric Determination of Curcumin after Preconcentration by Ultrasonic Assisted Supramolecular Dispersive Liquid-liquid Microextraction based on Solidification of Floating Organic Drops using Taguchi Design Method. Advanced Materials Letters, 2021; 12(11): 1-8. doi: 10.5185/aml.2022.4167.1008
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver


Mahmood, K.; Zia, K. M.; Zuber, M.; Salman, M.; Anjum, M. N.; Int. J. Biol. Macromol., 2015, 81, 877.
2.     Gong, C.Y.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z.; Biomaterials, 2013, 34, 6377-6387.
3.     Tønnesen, H. H.; Másson, M.; Loftsson, T.; Int. J. Pharm., 2002, 244, 127-135.
4.     Aydin, F.; Yilmaz, E.; Soylak, M.; Food Chem., 2018, 243, 442-447.
5.     Euterpio, M. A.; Cavaliere, C.; Capriotti, A. L.; Crescenzi, C.; Anal. Bioanal. Chem., 2011, 401, 2977.
6.     Lopez-Fernandez, O.; Rial-Otero, R.; Cid, A.; Simal-Gandara, J.; Food Chem., 2014, 145, 1002-1010.
7.     Hyötyläinen, T.; Anal. Bioanal. Chem., 2009, 394, 743-758.
8.     Jayaprakasha, G. K.; Rao, L. J. M.; Sakariah, K. K.; J. Agric. Food Chem., 2002, 50, 3668-3672.                             

9.     Hashemi, P.; Naderlou, M.; Safdarian, M.; Ghiasvand, A. R.; Anal. Chem. Lett., 2013, 3, 92-101.

10.   Rezaee, M.; Assadi, Y.; Milani, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S.; J. Chromatogr. A, 2006, 1116, 1-9.                               
11.   Hosseini, M.; Heydari, R.; Alimoradi, M.; Talanta, 2014, 130,171-176.
12.   Afkhami, A.; Pirdadeh-Beiranvand, M.; Madrakian, T.; Anal. Bioanal. Chem. Res., 2017, 4, 1-10.
13.   Unsal, Y. E.; Tuzen, M.; Soylak, M.; J. AOAC Int., 2019, 102, 217.

14.   Rocha, B. A.; de Oliveira, S. R.; da Silva, R. M.; Barcelos, G. R. M.; de Oliveira, A. R. M.; Barbosa, Jr. F.; Microchem J., 2019, 147, 207-214.

15.   Jing, L.; Meng-Meng, W.; Qiang, W.; Hai-Pu, L.; Zhao-Guang, Y.; Chinese J. Anal. Chem., 2018, 46, e1817-e1825.
16.   Shokrollahi, A.; Ebrahimi, F.; J. AOAC Int., 2017, 100, 1861.
17.   Senaa, L. C. S.; Matosb, H. R.; Dóreac, H. S.; Pimenteld, M. F.; de Santanae, D. C. A. S.; de Santanae, F. J. M.; Toxicol., 2015, 376, 102-112.
18.   Sanagi, M. M.; Abbas, H. H.; Wan Ibrahim, W. A.; Aboul-Enien, H. Y.; Food Chem., 2012, 133, 557.
19.   Shokrollahi, A.; Behrooj Pili, H.; Hemmati Doust, K.; Art., 2017, 72, 617-623.
20.   Altunay, N.; Unal, Y.; Elik, A.; Food Addit. Contam. Part A, 2020, 37,1944.
21.   Menghwar, P.; Yilmaz, E.; Soylak, M.; Sep. Sci. Technol., 2018, 53, 2612-2621.
22.   Ballesteros-Gómez, A.; Sicilia, M. D.; Rubio, S.; Anal. Chim. Acta, 2010, 677, 108-130.
23.   Costi, E. M.; Sicilia, M. D.; Rubio, S.; J. Chromatogr. A, 2010, 1217, 1447-1454.
24.   Luque, N.; Rubio, S.; Pérez-Bendito, D.; Anal. Chim. Acta, 2007, 584, 181.

25.   López-Jiménez, F. J.; Rubio, S.; Pérez-Bendito, D.; Food Chem., 2010, 121, 763-769.
26.   Ruiz, F. J.; Rubio, S.; Pérez-Bendito, D.; J. Chromatogr. A, 2007, 1163, 269-276.
27.   Ruiz, F. J.; Rubio, S.; Pe ´rez-Bendito, D.; Anal. Chem., 2007, 79, 7473-7484.
28.   Berijani, S.; Assadi, Y.; Anbia, M.; Milani Hosseini, M-R.; Aghaee, E.; J. Chromatogr. A, 2006, 1123, 1-9.
29.   Ravelo-Pérez, L. M.; Hernández-Borges, J.; Asensio-Ramos, M.; Rodríguez- Delgado, M. Á.; J. Chromatogr. A, 2009, 1216, 7336-7345.
30.   Cortada, C.; Vidal, L.; Pastor, R.; Santiago, N.; Canals, A.; Anal. Chim. Acta, 2009, 649, 218-21.

31. Afrasiabi, H.; A, Khayati, G. R.; Ehteshamzadeh, M.; Int. J. Eng., 2014, 27, 1423-1430.

32.   Ballesteros-Gómez, A.; Ruiz, F. J.; Rubio, S.; Pe ´rez-Bendito, D.; Anal. Chim. Acta, 2007, 603, 51-59.
33.   Rezaee, M.; Yamini, Y.; Khanchi, A.; Faraji, M.; Saleh, A.; J. Hazard. Mater., 2010, 178, 766-770.
34.   Wu, Ch. X.; Wu, Q. H.; Wang, Ch.; Wang, Z.; Chin. Chem. Lett., 2011, 22, 473-476.
35.   Leong, M. I.; Huang, H.; J. Chromatogr. A, 2008, 1211, 8-12.
36.   Wang, Y.; Zhang, J.; Zhao, B.; Du, X.; Ma, J.; Li, J.; Biol. Trace Elem. Res.; 2011, 144, 1381-1393.  
37.   Atil, H.; Unver, Y.; J. Biol. Sci., 2000, 3, 1538.
38.   Artola, A.; Balaguer, M. D.; Rigola, M.; Water Res., 1997, 31, 997-1004.

39.   Petersen, J. N.; Drying Technol., 1986, 4, 319-330.             
40.   Bernabé-Pineda, M.; Ramírez-Silva, M. T.; Romero-Romo, M.; González- Vergara, E.; Rojas-Hernández, A.; Spectrochim. Acta Part A., 2004, 60, 109-1097.
41.   Wellen, B. A.; Lach, E. A.; Allen, H. C.; Phys. Chem. Chem. Phys., 2017, 19, 26445.
42.   Rahimi, M.; Hashemi, P.; Nazari, F.; Anal. Chim. Acta, 2017, 826, 35-42.

43.   Asfaram, A.; Ghaedi, M.; Alipanahpour, E.; Agarwal, S.; Gupta, V. K.; Food Anal. Methods, 2016, 9, 1274-1283.

44.   Hashemi, P.; Naderlou, M.; Safdarian, M.; Ghiasvand, A. R.; Anal.  Chem. Lett., 2013, 3, 92-101.
45.   Safdarian, M.; Hashemi, P.; Naderlou, M.; J. Chromatogr. A, 2012, 1244, 14-19.



  • Article View: 78
  • PDF Download: 67
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus