International Association of Advanced Materials
  • Register
  • Login

Advanced Materials Letters

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 12, Issue 11
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Advisory Board

Editorial Staff

Publication Ethics

Indexing and Abstracting

Related Links

News

A Review on Green Polymer Binder-based Electrodes and Electrolytes for All Solid-State Li-ion batteries

    Adhigan Murali Saravanan Ashok Vallal Mohan Sakar R. Ramesh M. Devendiran N. Suthanthira Vanitha

Advanced Materials Letters, 2021, Volume 12, Issue 11, Pages 1-9
10.5185/aml.2022.4140.1002

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

It is not an exaggerated fact that the whole world relies on the energy storage systems such as Li-ion batteries (LIBs). Li-ion batteries have been widely used in electric vehicles and electronic devices such as laptops, mobile phones, etc. However, the commercial Li-ion batteries have many issues associated with safety and durability including the thermal runaway and the use of toxic solvents during the construction of batteries. In order to highlight the recent developments towards addressing these issues, we have summarized the major impact in replacing the toxic solvents, which are conventionally used to dissolve the binder in the commercial Li-ion batteries, with the aqueous-based binder called green binders. Further, an emphasis has been given on the importance of shifting from flammable liquid electrolytes to non-flammable solid-electrolytes, which essentially suppress the issues such as leakage problems, mechanical failure and fire explosives in LIBs. Even though considerable works have been performed on the development of green-based solid polymer electrolytes, it still needs more effort to overcome the obstacles towards improving the properties of the solid-polymer matrix, which is their low ionic conductivity at low temperatures. Further research in this direction has been highlighted in this review, which involves improving the interfacial contacts in the solid-polymer electrolytes, where the interfacial interaction and conductive mechanisms are yet to be clearly investigated to have the solid-electrolytes with improved electrochemical property.
Keywords:
    Lithium-ion battery aqueous binder green solid-state electrolyte
  • PDF (918 K)
  • XML
(2021). A Review on Green Polymer Binder-based Electrodes and Electrolytes for All Solid-State Li-ion batteries. Advanced Materials Letters, 12(11), 1-9. doi: 10.5185/aml.2022.4140.1002
Adhigan Murali; Saravanan Ashok Vallal; Mohan Sakar; R. Ramesh; M. Devendiran; N. Suthanthira Vanitha. "A Review on Green Polymer Binder-based Electrodes and Electrolytes for All Solid-State Li-ion batteries". Advanced Materials Letters, 12, 11, 2021, 1-9. doi: 10.5185/aml.2022.4140.1002
(2021). 'A Review on Green Polymer Binder-based Electrodes and Electrolytes for All Solid-State Li-ion batteries', Advanced Materials Letters, 12(11), pp. 1-9. doi: 10.5185/aml.2022.4140.1002
A Review on Green Polymer Binder-based Electrodes and Electrolytes for All Solid-State Li-ion batteries. Advanced Materials Letters, 2021; 12(11): 1-9. doi: 10.5185/aml.2022.4140.1002
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver

  1. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D.; Energy Environ. Sci.,2012, 5, 7863.
  2. Tarascon, J. M.; Armand, M.; Nature., 2001, 414, 359.
  3.  Meesala, Y.; Jena, A.; Chang, H.; Liu, R. S.; ACS Energy Lett., 2017, 2, 2734.
  4. Arya, A.; Sharma, A. L.; J. Phys. D Appl. Phys., 2017, 50, 443002.
  5. Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H.; Adv. Energy Mater., 2018, 8, 1702184.
  6. Lin, D.; Liu, Y.; Cui, Y.; Nat. Nanotechnol., 2017, 12, 194.
  7. Tallner, C.; Lannetoft, S. CODEN: LUTEDX/(TEIE-5194)/1-71 (2005).
  8. O'Brien, R.  U.S. Patent Application No. 11/374,600.
  9. Courtel, F. M.; Niketic, S.; Duguay, D.; Abu-Lebdeh, Y.; Davidson, I. J.; J. Power Sources, 2011, 196, 2128.
  10. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Nano Energy., 2019, 55, 93.
  11. Liu, H.; Cheng, X. B.; Huang, J. Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G. L.; Xu, R.; Zhao, C.Z.; Hou, L. P.; He, C. X.; Kaskel, S.; Zhang, Q.; ACS Energy Lett., 2020, 5, 833.
  12.  Li, G.; Monroe, C. W.; Phys. Chem. Chem. Phys., 2019, 21, 20354.
  13.  Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J.; Am. J. Chem. Soc., 2016, 138, 15825.
  14. Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y.G. Angew. Chem. Int. Ed., 2018, 57, 1505.
  15. Zhou, G. M.; Li, F.; Cheng, H. M.; Energy Environ. Sci., 2014, 7, 1307.
  16. Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y.; Adv. Mater., 2018, 30, 1705702.
  17. Yongjin, F.; Xin-Yao, Y.; Xiong Wen (David), L.; Mater, 2019, 1, 90.
  18. Chan, C. K.; Liang, W. U.S. Patent No. 8, 2015, 968.
  19. Kutbee, A T. Integration Strategy for Free-form Lithium Ion Battery: Material, Design to System level Applications. Diss. 2017.
  20. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X.; Energy Environ. Sci., 2014, 7, 3857.
  21. Marshall, J.E.; Zhenova, A.; Roberts, S.; Petchey, T.; Zhu, P.; Dancer, C.E.J.; McElroy, C.R., Kendrick, E.; Goodship, V.; Polymers, 2021, 13, 1354.
  22. Wei, J.; Wang, Z.; Xing, X.; Sensors, 2020, 21, 193.
  23. Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S.; Energy Environ. Sci., 2018, 11, 3096.
  24. Lee, K. P.; Chromey, N. C.; Culik, R.; Barnes, J. R.; Schneider, P. W.; Fundam. Appl. Toxicol., 1987, 9, 222.
  25. Malek, D. E.; Malley, L. A.; Slone, T. W.; Elliott, G. S.; Kennedy, G. L.; Mellert, W.; Deckardt, K.; Gembardt, C.; Hildebrand, B.; Murphy, S. R.; Bower, D. B.; Wright, G. A.; Drug Chem. Toxicol., 1997, 20, 77.
  26. Zhu, W.; Schmehl, D. R.; Mullin C. A.; Frazier, J. L.; PLoS One, 2014, 9, 77547.
  27. Maity, K.; Garain, S.; Henkel, K.; Schmeisser, D.; Mandal, D.; ACS Appl. Polym. Mater., 2020, 2, 862.
  28. Haufroid, V.; Jaeger, V. K.; Jeggli, S.; Eisenegger, R.; Bernard, A.; Friedli, D.; Lison D.; Hotz, P.; Int. Arch. Occup. Environ. Health, 2014, 87, 663.
  29. Wood Iii, D. L.; Li, J.; Daniel, C.; J. Power Sources., 2015, 275, 234.
  30. Peng, H.; Energy. Polym. Rev., 2019, 59, 739
  31. Susarla, N.; Ahmed, S.; Dees, D. W.; J. Power Sources., 2018, 378, 660.
  32. Perera, S. D.; Patel, B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J. P.; Chabal, Y. J.; Balkus Jr, K. J.; Adv. Energy Mater., 2011, 1, 936.
  33. Park, H. K.; Kong, B. S.; Oh, E. S.; Electrochem. Commun., 2011, 13, 1051.
  34. Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D.; Adv. Funct. Mater. 2014, 24, 5904.
  35. Lee, S.; Kim, EY.; Lee, H.; Oh, ES.; J. Power Sources., 2014, 269, 418.
  36. Feng, X.; Yang, J.; Yu, X.; Wang, J.; Nuli, Y.; J. Solid State Electrochem., 2013, 17, 2461.
  37. He, J.; Zhang, L.; J. Alloys Compd., 2018, 763, 228.
  38. Zheng, M.; Wang, C.; Xu, Y.; Li, K.; Liu, D.; Electrochim. Acta, 2019, 305, 555.
  39. Aslan, M.; Weingarth, D.; Jackel, N.; Atchison, J. S.; Grobelsek, I.; Presser V.; J. Power Sources, 2014, 266, 374.
  40. Lawes, S.; Sun, Q.; Lushington, A.; Xiao, B.; Liu, Y.; Sun, X.; Nano Energy, 2017, 36, 313.
  41. Lestriez, B.; Bahri, S.; Sandu, I.; Roué, L.; Guyomard, D.; Electrochem. Commun., 2007, 9, 2801.
  42. Sen, U. K.; Mitra, S.; ACS Appl. Mater. Interfaces., 2013,5, 1240.
  43. Sen, U. K.; Mitra, S.; J. Solid State Electrochem., 2014, 18, 2701.
  44. Prosini, P. P.; Cento, C.; Carewska, M.; Masci, A.; Solid State Ion., 2015, 274, 34.
  45. Pramanik, A.; Maiti, S.; Mahanty, S.; Sci. Lett., 2015,4, 104.
  46. Meziane, R.; Bonnet, J. P.; Courty, M.; Djellab, K.; Armand, M.; Electrochim. Acta, 2011, 57, 14.
  47. Zhu, Y. S.; Gao, X. W.; Wang, X. J.; Hou, Y. Y.; Liu, L. L.; Wu, Y. P.; Electrochem. Commun., 2012, 22, 29.
  48. Zhu, Y. S.; Wang, X. J.; Hou, Y. Y.; Gao, X. W.; Liu, L. L.; Wu, Y. P.; Shimizu, M.; Electrochim. Acta, 2013, 87, 113.
  49. Wang, Z.; Tang, Y.; Li, B.; RSC Adv., 2018, 8, 25159
  50. Yao, X.; Huang, B.; Yin, J.; Peng, G.; Huang, Z.; Gao, C.; Liu, D.; Xu, X.; Chin. Phys. B, 2016, 25, 018802.
  51. Wang, H.; Sheng, L.; G Yasin, G.; Wang, L.; Xu, H.; He, X.; Energy Storage Mater., 2020, 33, 188.
  52. Mitra, S.; Kulkarni, AR.; Solid State Ion., 2002, 37, 154
  53. Grewal, M. S.; Tanaka, M.; Kawakami, H.; Polym. Int., 2019, 68, 684.
  54. Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J. R.; Sci. Rep., 2016, 6, 19892.
  55. Cui, Y.; Liang, X.; Chai, J.; Cui, Z.; Wang, Q.; He, W.; Liu, X.; Liu, Z.; Cui, G.; Feng, J.; Adv. Sci., 2017, 4, 1700174.
  56. Huang, S. Q.; Cui, Z. L.; Qiao, L. X.; Xu, G. J.; Zhang, J. J.; Tang, K.; Liu, X. C.; Wang, Q. L.; Zhou, X. H.; Zhang, B. T.; Cui, G. L.;  Electrochim. Acta., 2019, 299, 820.
  57. Nair, J. R.; Colo, F.; Kazzazi, A.; Moreno, M.; Bresser, D.; Lin, R. Y.; Bella, F.; G. Meligrana, G.; Fantini, S.; Simonetti, E.; Appetecchi, G. B.; Passerini, S.; Gerbaldi, C.; J. Power Sources, 2019, 412, 398.
  58. Nair, J. R.; Destro, M.; Bella, F.; Appetecchi, G. B.; Gerbaldi, C.;
    J. Power Sources., 2016, 306, 258.
  59. Chunsheng, Wang.; Ying, S.  M.; Kang, Xu; J. Electrochem. Soc., 2018, 166, A5184.
  60. Falco, M.; Simari, C.; Ferrara, C.; Nair, J. R.; Meligrana, G.; Bella, F.; Nicotera, I.; Mustarelli, P.; Winter, M.; Gerbaldi, C.; Langmuir, 2019, 35, 8210.
  61. Nair, J. R.; Porcarelli, L.; Bella, F.; Gerbaldi, C.; ACS Appl. Mater. Interfaces, 2015, 7, 12961.
  62. Ehteshami, N.; Eguia-Barrio, A.; de Meatza, I.; Porcher, W.; Paillard, E.; J. Power Sources., 2018, 397, 52.
  63. Nuyken, O.; Pask, S. D.; Polymers, 2013, 5, 361.
  64. Nair, J. R.; Shaji, I.; Ehteshami, N.; Thum, A.; Diddens, D.; Heuer, A.; Winter, M.; Chem. Mater. 2019, 31, 3118.
  65. Jinisha, B.; Anilkumar, K. M.; Manoj, M.; Pradeep, V. S.; Jayalekshmi, S.; Electrochim. Acta., 2017, 235, 210.
  66. Gerbaldi, C.; Destro, M.; Jijeesh, R. N.; Ferrari, S.; Quinzeni, I.; Quartarone, E.; Nano Energy, 2013, 2, 1279.
  67. Huang, S. Q.; Cui, Z.  L.; Qiao, L.  X.; Xu, G. J.; Zhang, J. J.; Tang, K.; Liu, X. C.; Wang, Q. L.; Zhou, X. H.; Zhang, B. T.; Cui, G. L.; Electrochim. Acta, 2019, 299, 820.
  68. Nair, J.R.; Destro, M.; Gerbaldi, C.; Bongiovanni, R.; Penazzi, N. J.; App. Electrochem. 2013, 43, 137.
  69. Nair, J.R.; Gerbaldi, C.; Destro, M.; Bongiovanni, R.; Penazzi, N.; React. Funct. Polym., 2011, 71, 409.
  70. Young, W. S.; Kuan, W. F.; Epps, T. H.; J. Polym. Sci., Part B: Polym. Phys., 2014, 52, 1.
  71. Giacomelli, C.; Schmidt, V.; Aissou, K.; Borsali, R.; Langmuir, 2010, 26, 15734.
  72. Young, W. S.; Epps, T. H.; Macromolecules, 2012, 45, 4689.
  73. Aldalur, I.; Martinez-Ibanez, M.; Piszcz, M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M.; J. Power Sources, 2018, 383, 144.
  74. Nguyen, H. D.; Kim, G. T.; Shi, J. L.; Paillard, E.; Judeinstein, P.; Lyonnard, S.; Bresser, D.; Iojoiu, C.; Energy Environ. Sci. 2018, 11, 3298.
  75. Sun, X. Y.; Yang, X. H.; Liu, Y. H.; Wang, X. L.; J. Polym. Sci. Part A Polym. Chem., 2004, 42, 2356.
  76. Zhang, J. F.; Ma, C.; Liu, J. T.; Chen, L. B.; Pan, A. Q.; Wei, W. F.; J. Membr. Sci., 2016, 509, 138.
  77. Xu, H.; Wang, A. L.; Liu, X.; Feng, D.; Wang, S.; Chen, J.; An, Y.; Zhang, L. Y.; Polymer, 2018, 146, 249.
  78. Kim, D. G.; Shim, J. M.; Lee, J. H.; Kwon, S. J.; Baik, J. H.; Lee, J. C.; Polymer, 2013, 54, 5812.
  79. Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G.; Chem. Rev., 2016, 116, 6743.
  80. Nair, J.R.; Gerbaldi, C.; Chiappone, A.; Zeno, E.; Bongiovanni,R.; Bodoardo, S.;  Penazzi, N.; Electrochem. Commun., 2009, 11, 1796.
  81. Nair, J.R.; Gerbaldi, C.; Meligrana, Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.; J. Power Sources, 2008, 178, 751.
  82. Ren, S. T.; Chang, H. F.; He, L. J.; Dang, X. F.; Fang, Y. Y.; Zhang, L. Y.; Li, H. Y.; Hu, Y. Lin, Y. L.; J. Appl. Polym. Sci., 2013, 129, 1131.
  83. Xiao, Z. L.; Zhou, B. H.; Wang, J. R.; Zuo, C.; He, D.; Xie, X. L.; Xue, Z. G.; J. Membr. Sci., 2019, 576, 182.
  84. Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H.; Adv. Mater., 2017, 29, 1604460.
  85. Lin, Y. C.; Ito, K.; Yokoyama, H.; Polymer, 2018, 136, 121.
  86. Zhang, J.; Li, X.; Li, Y.; Wang, H.; Ma, C.; Wang, Y.; Hu, S.; Wei, W.; Front. Chem., 2018, 6, 186.
  87. Zhang, Y. H.; Lu, W.; Cong, L. N.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M.; Xie, H. M.; Liu, J.; J. Power Sources, 2019, 420, 63.

  • Article View: 117
  • PDF Download: 180
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus