Document Type : Review Article


1 School for Advanced Research in Polymers (SARP)-Advanced Research School for Technology and Product Simulation (ARSTPS), Central Institute of Plastics Engineering & Technology (CIPET), Chennai-600032, Ministry of Chemicals & Fertilizers,

2 School for Advanced Research in Petrochemicals (SARP)-ARSTPS, Central Institute of Petrochemicals Engineering & Technology (CIPET), Chennai-600 032, Ministry of Chemicals & Fertilizers, Govt. of India.

3 Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India.

4 College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Post Box No16417, Addis Ababa, Ethiopia

5 Vels Institute of Science Technology and Advanced Studies (VISTAS), Pallavaram, Chennai -117, India

6 Department of Electrical & Electronics Engineering, Muthayammal Engineering College (Autonomous), Namakkal 637408, Tamilnadu, India


It is not an exaggerated fact that the whole world relies on the energy storage systems such as Li-ion batteries (LIBs). Li-ion batteries have been widely used in electric vehicles and electronic devices such as laptops, mobile phones, etc. However, the commercial Li-ion batteries have many issues associated with safety and durability including the thermal runaway and the use of toxic solvents during the construction of batteries. In order to highlight the recent developments towards addressing these issues, we have summarized the major impact in replacing the toxic solvents, which are conventionally used to dissolve the binder in the commercial Li-ion batteries, with the aqueous-based binder called green binders. Further, an emphasis has been given on the importance of shifting from flammable liquid electrolytes to non-flammable solid-electrolytes, which essentially suppress the issues such as leakage problems, mechanical failure and fire explosives in LIBs. Even though considerable works have been performed on the development of green-based solid polymer electrolytes, it still needs more effort to overcome the obstacles towards improving the properties of the solid-polymer matrix, which is their low ionic conductivity at low temperatures. Further research in this direction has been highlighted in this review, which involves improving the interfacial contacts in the solid-polymer electrolytes, where the interfacial interaction and conductive mechanisms are yet to be clearly investigated to have the solid-electrolytes with improved electrochemical property.


  1. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D.; Energy Environ. Sci.,2012, 5, 7863.
  2. Tarascon, J. M.; Armand, M.; Nature., 2001, 414, 359.
  3.  Meesala, Y.; Jena, A.; Chang, H.; Liu, R. S.; ACS Energy Lett., 2017, 2, 2734.
  4. Arya, A.; Sharma, A. L.; J. Phys. D Appl. Phys., 2017, 50, 443002.
  5. Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H.; Adv. Energy Mater., 2018, 8, 1702184.
  6. Lin, D.; Liu, Y.; Cui, Y.; Nat. Nanotechnol., 2017, 12, 194.
  7. Tallner, C.; Lannetoft, S. CODEN: LUTEDX/(TEIE-5194)/1-71 (2005).
  8. O'Brien, R.  U.S. Patent Application No. 11/374,600.
  9. Courtel, F. M.; Niketic, S.; Duguay, D.; Abu-Lebdeh, Y.; Davidson, I. J.; J. Power Sources, 2011, 196, 2128.
  10. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Nano Energy., 2019, 55, 93.
  11. Liu, H.; Cheng, X. B.; Huang, J. Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G. L.; Xu, R.; Zhao, C.Z.; Hou, L. P.; He, C. X.; Kaskel, S.; Zhang, Q.; ACS Energy Lett., 2020, 5, 833.
  12.  Li, G.; Monroe, C. W.; Phys. Chem. Chem. Phys., 2019, 21, 20354.
  13.  Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J.; Am. J. Chem. Soc., 2016, 138, 15825.
  14. Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y.G. Angew. Chem. Int. Ed., 2018, 57, 1505.
  15. Zhou, G. M.; Li, F.; Cheng, H. M.; Energy Environ. Sci., 2014, 7, 1307.
  16. Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y.; Adv. Mater., 2018, 30, 1705702.
  17. Yongjin, F.; Xin-Yao, Y.; Xiong Wen (David), L.; Mater, 2019, 1, 90.
  18. Chan, C. K.; Liang, W. U.S. Patent No. 8, 2015, 968.
  19. Kutbee, A T. Integration Strategy for Free-form Lithium Ion Battery: Material, Design to System level Applications. Diss. 2017.
  20. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X.; Energy Environ. Sci., 2014, 7, 3857.
  21. Marshall, J.E.; Zhenova, A.; Roberts, S.; Petchey, T.; Zhu, P.; Dancer, C.E.J.; McElroy, C.R., Kendrick, E.; Goodship, V.; Polymers, 2021, 13, 1354.
  22. Wei, J.; Wang, Z.; Xing, X.; Sensors, 2020, 21, 193.
  23. Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S.; Energy Environ. Sci., 2018, 11, 3096.
  24. Lee, K. P.; Chromey, N. C.; Culik, R.; Barnes, J. R.; Schneider, P. W.; Fundam. Appl. Toxicol., 19879, 222.
  25. Malek, D. E.; Malley, L. A.; Slone, T. W.; Elliott, G. S.; Kennedy, G. L.; Mellert, W.; Deckardt, K.; Gembardt, C.; Hildebrand, B.; Murphy, S. R.; Bower, D. B.; Wright, G. A.; Drug Chem. Toxicol., 199720, 77.
  26. Zhu, W.; Schmehl, D. R.; Mullin C. A.; Frazier, J. L.; PLoS One, 20149, 77547.
  27. Maity, K.; Garain, S.; Henkel, K.; Schmeisser, D.; Mandal, D.; ACS Appl. Polym. Mater., 2020, 2, 862.
  28. Haufroid, V.; Jaeger, V. K.; Jeggli, S.; Eisenegger, R.; Bernard, A.; Friedli, D.; Lison D.; Hotz, P.; Int. Arch. Occup. Environ. Health, 201487, 663.
  29. Wood Iii, D. L.; Li, J.; Daniel, C.; J. Power Sources., 2015275, 234.
  30. Peng, H.; Energy. Polym. Rev., 2019, 59, 739
  31. Susarla, N.; Ahmed, S.; Dees, D. W.; J. Power Sources., 2018378, 660.
  32. Perera, S. D.; Patel, B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J. P.; Chabal, Y. J.; Balkus Jr, K. J.; Adv. Energy Mater., 2011, 1, 936.
  33. Park, H. K.; Kong, B. S.; Oh, E. S.; Electrochem. Commun., 2011, 13, 1051.
  34. Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D.; Adv. Funct. Mater. 2014, 24, 5904.
  35. Lee, S.; Kim, EY.; Lee, H.; Oh, ES.; J. Power Sources., 2014, 269, 418.
  36. Feng, X.; Yang, J.; Yu, X.; Wang, J.; Nuli, Y.; J. Solid State Electrochem., 2013, 17, 2461.
  37. He, J.; Zhang, L.; J. Alloys Compd., 2018, 763, 228.
  38. Zheng, M.; Wang, C.; Xu, Y.; Li, K.; Liu, D.; Electrochim. Acta, 2019, 305, 555.
  39. Aslan, M.; Weingarth, D.; Jackel, N.; Atchison, J. S.; Grobelsek, I.; Presser V.; J. Power Sources, 2014, 266, 374.
  40. Lawes, S.; Sun, Q.; Lushington, A.; Xiao, B.; Liu, Y.; Sun, X.; Nano Energy, 2017, 36, 313.
  41. Lestriez, B.; Bahri, S.; Sandu, I.; Roué, L.; Guyomard, D.; Electrochem. Commun., 2007, 9, 2801.
  42. Sen, U. K.; Mitra, S.; ACS Appl. Mater. Interfaces., 2013,5, 1240.
  43. Sen, U. K.; Mitra, S.; J. Solid State Electrochem., 2014, 18, 2701.
  44. Prosini, P. P.; Cento, C.; Carewska, M.; Masci, A.; Solid State Ion., 2015, 274, 34.
  45. Pramanik, A.; Maiti, S.; Mahanty, S.; Sci. Lett., 2015,4, 104.
  46. Meziane, R.; Bonnet, J. P.; Courty, M.; Djellab, K.; Armand, M.; Electrochim. Acta, 2011, 57, 14.
  47. Zhu, Y. S.; Gao, X. W.; Wang, X. J.; Hou, Y. Y.; Liu, L. L.; Wu, Y. P.; Electrochem. Commun., 2012, 22, 29.
  48. Zhu, Y. S.; Wang, X. J.; Hou, Y. Y.; Gao, X. W.; Liu, L. L.; Wu, Y. P.; Shimizu, M.; Electrochim. Acta, 2013, 87, 113.
  49. Wang, Z.; Tang, Y.; Li, B.; RSC Adv., 2018, 8, 25159
  50. Yao, X.; Huang, B.; Yin, J.; Peng, G.; Huang, Z.; Gao, C.; Liu, D.; Xu, X.; Chin. Phys. B, 2016, 25, 018802.
  51. Wang, H.; Sheng, L.; G Yasin, G.; Wang, L.; Xu, H.; He, X.; Energy Storage Mater., 2020, 33, 188.
  52. Mitra, S.; Kulkarni, AR.; Solid State Ion., 2002, 37, 154
  53. Grewal, M. S.; Tanaka, M.; Kawakami, H.; Polym. Int., 2019, 68, 684.
  54. Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J. R.; Sci. Rep., 2016, 6, 19892.
  55. Cui, Y.; Liang, X.; Chai, J.; Cui, Z.; Wang, Q.; He, W.; Liu, X.; Liu, Z.; Cui, G.; Feng, J.; Adv. Sci., 2017, 4, 1700174.
  56. Huang, S. Q.; Cui, Z. L.; Qiao, L. X.; Xu, G. J.; Zhang, J. J.; Tang, K.; Liu, X. C.; Wang, Q. L.; Zhou, X. H.; Zhang, B. T.; Cui, G. L.;  Electrochim. Acta., 2019, 299, 820.
  57. Nair, J. R.; Colo, F.; Kazzazi, A.; Moreno, M.; Bresser, D.; Lin, R. Y.; Bella, F.; G. Meligrana, G.; Fantini, S.; Simonetti, E.; Appetecchi, G. B.; Passerini, S.; Gerbaldi, C.; J. Power Sources, 2019, 412, 398.
  58. Nair, J. R.; Destro, M.; Bella, F.; Appetecchi, G. B.; Gerbaldi, C.;
    J. Power Sources., 2016, 306, 258.
  59. Chunsheng, Wang.; Ying, S.  M.; Kang, Xu; J. Electrochem. Soc., 2018, 166, A5184.
  60. Falco, M.; Simari, C.; Ferrara, C.; Nair, J. R.; Meligrana, G.; Bella, F.; Nicotera, I.; Mustarelli, P.; Winter, M.; Gerbaldi, C.; Langmuir, 2019, 35, 8210.
  61. Nair, J. R.; Porcarelli, L.; Bella, F.; Gerbaldi, C.; ACS Appl. Mater. Interfaces, 2015, 7, 12961.
  62. Ehteshami, N.; Eguia-Barrio, A.; de Meatza, I.; Porcher, W.; Paillard, E.; J. Power Sources., 2018, 397, 52.
  63. Nuyken, O.; Pask, S. D.; Polymers, 2013, 5, 361.
  64. Nair, J. R.; Shaji, I.; Ehteshami, N.; Thum, A.; Diddens, D.; Heuer, A.; Winter, M.; Chem. Mater. 2019, 31, 3118.
  65. Jinisha, B.; Anilkumar, K. M.; Manoj, M.; Pradeep, V. S.; Jayalekshmi, S.; Electrochim. Acta., 2017, 235, 210.
  66. Gerbaldi, C.; Destro, M.; Jijeesh, R. N.; Ferrari, S.; Quinzeni, I.; Quartarone, E.; Nano Energy, 2013, 2, 1279.
  67. Huang, S. Q.; Cui, Z.  L.; Qiao, L.  X.; Xu, G. J.; Zhang, J. J.; Tang, K.; Liu, X. C.; Wang, Q. L.; Zhou, X. H.; Zhang, B. T.; Cui, G. L.; Electrochim. Acta, 2019, 299, 820.
  68. Nair, J.R.; Destro, M.; Gerbaldi, C.; Bongiovanni, R.; Penazzi, N. J.; App. Electrochem. 2013, 43, 137.
  69. Nair, J.R.; Gerbaldi, C.; Destro, M.; Bongiovanni, R.; Penazzi, N.; React. Funct. Polym., 2011, 71, 409.
  70. Young, W. S.; Kuan, W. F.; Epps, T. H.; J. Polym. Sci., Part B: Polym. Phys., 2014, 52, 1.
  71. Giacomelli, C.; Schmidt, V.; Aissou, K.; Borsali, R.; Langmuir, 2010, 26, 15734.
  72. Young, W. S.; Epps, T. H.; Macromolecules, 2012, 45, 4689.
  73. Aldalur, I.; Martinez-Ibanez, M.; Piszcz, M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M.; J. Power Sources, 2018, 383, 144.
  74. Nguyen, H. D.; Kim, G. T.; Shi, J. L.; Paillard, E.; Judeinstein, P.; Lyonnard, S.; Bresser, D.; Iojoiu, C.; Energy Environ. Sci. 2018, 11, 3298.
  75. Sun, X. Y.; Yang, X. H.; Liu, Y. H.; Wang, X. L.; J. Polym. Sci. Part A Polym. Chem., 2004, 42, 2356.
  76. Zhang, J. F.; Ma, C.; Liu, J. T.; Chen, L. B.; Pan, A. Q.; Wei, W. F.; J. Membr. Sci., 2016, 509, 138.
  77. Xu, H.; Wang, A. L.; Liu, X.; Feng, D.; Wang, S.; Chen, J.; An, Y.; Zhang, L. Y.; Polymer, 2018, 146, 249.
  78. Kim, D. G.; Shim, J. M.; Lee, J. H.; Kwon, S. J.; Baik, J. H.; Lee, J. C.; Polymer, 2013, 54, 5812.
  79. Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G.; Chem. Rev., 2016, 116, 6743.
  80. Nair, J.R.; Gerbaldi, C.; Chiappone, A.; Zeno, E.; Bongiovanni,R.; Bodoardo, S.;  Penazzi, N.; Electrochem. Commun., 2009, 11, 1796.
  81. Nair, J.R.; Gerbaldi, C.; Meligrana, Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.; J. Power Sources, 2008, 178, 751.
  82. Ren, S. T.; Chang, H. F.; He, L. J.; Dang, X. F.; Fang, Y. Y.; Zhang, L. Y.; Li, H. Y.; Hu, Y. Lin, Y. L.; J. Appl. Polym. Sci., 2013, 129, 1131.
  83. Xiao, Z. L.; Zhou, B. H.; Wang, J. R.; Zuo, C.; He, D.; Xie, X. L.; Xue, Z. G.; J. Membr. Sci., 2019, 576, 182.
  84. Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H.; Adv. Mater., 2017, 29, 1604460.
  85. Lin, Y. C.; Ito, K.; Yokoyama, H.; Polymer, 2018, 136, 121.
  86. Zhang, J.; Li, X.; Li, Y.; Wang, H.; Ma, C.; Wang, Y.; Hu, S.; Wei, W.; Front. Chem., 2018, 6, 186.
  87. Zhang, Y. H.; Lu, W.; Cong, L. N.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M.; Xie, H. M.; Liu, J.; J. Power Sources, 2019, 420, 63.