Multiwalled carbon nanotubes (MWCNT)- reinforced carbon/copper (C/Cu) composites were developed by powder metallurgy technique and mixed powders of C and Cu were consolidated into plates without using any extra binder followed by sintering at 1000 o C in inert atmosphere. Samples were characterized for structural, mechanical, electrical and thermal properties w.r.t. different mass fraction of MWCNT in C-Cu matrix. In comparison to C/Cu composite, addition of minute amount (0.25 wt%) of CNT in C-Cu substantially improved the mechanical, electrical and thermal properties of composites. These composites were mechanically stable and strong and exhibited high bending strength of 162 MPa, indicating a homogeneous dispersion of MWCNTs in the C-Cu matrix. Maximum thermal conductivity of 37.60 W/mK perpendicular to the pressing direction was obtained for 0.50 wt% CNT reinforced C-Cu composite exhibiting an improvement of 45% over pure C-Cu composite processed under identical conditions. High thermal conducting and mechanically strong composites can be used as heat sink for long time.