Despite hot pressing being the most popular method of consolidating B6O powder, the Raman spectrum of polycrystalline hot-pressed B6O was until now poorly understood. Yet, recent reports have contributed to the understanding of only high-pressure and high-temperature sintered B6O. Using an automated method for subtraction of the fluorescence background from Raman measurements, the first- and second-order Raman spectra of B6O and their dependence on the wavelength of the excitation line from a green Argon ion (Ar + ) laser are reported. Our results confirm the existence of observable highly resolved first- and second-order Raman modes measured at ambient conditions using a green Ar + ion laser as the source of excitation. We also extend our study to present a comparative analysis of our recovered first-order Raman spectra and previously reported first-order Raman spectra other α-rhombohedral boron type based ultra-hard boron-rich ceramic materials. The results show an overall good agreement.