Sharil Fadli Mohamad Zamri; Famiza Abdul Latif; Siti Izzati Husna Mohd Azuan; Ab Malik Marwan Ali; Ruhani Ibrahim; Norashima Kamaluddin; Fitrah Hadip
Abstract
In this study, polymer electrolytes derived from polymethyl methacrylate/50 % epoxidized natural rubber (PE) were successfully prepared. The effects of silicon dioxide (SiO2) (15 nm) and acid modified SiO2 (HCl-SiO2) (15 nm) on the film formation and ionic conductivity of polymer electrolytes were investigated. ...
Read More
In this study, polymer electrolytes derived from polymethyl methacrylate/50 % epoxidized natural rubber (PE) were successfully prepared. The effects of silicon dioxide (SiO2) (15 nm) and acid modified SiO2 (HCl-SiO2) (15 nm) on the film formation and ionic conductivity of polymer electrolytes were investigated. In samples preparation, SiO2 was used as received. Meanwhile, HCl-SiO2 was prepared by reacting SiO2 with 7 M of hydrochloric acid (HCl) solution. PE, PE filled with SiO2 (PE-SiO2) and PE filled with HCl-SiO2 (PE-HCl-SiO2) electrolytes were prepared by solvent casting method with tetrahydrofuran (THF) as solvent and lithium tetrafluoroborate (LiBF4) as doping salt. The smoothness surface, opacity and agglomeration of PE-HCl-SiO2 film were found in between PE and PE-SiO2. CHNS analysis shows that the percentage of hydrogen in HCl-SiO2 and SiO2 are 0.88 and 2.07 %, respectively. Fourier transform infra-red (FT-IR) analysis confirm that HCl-SiO2 has low number of silanol group (Si-OH) but high number of siloxane group (Si-O-Si) compared to SiO2. Field Emission Scanning Electron Microscopy (FESEM) analysis shows that HCl-SiO2 has smaller size of agglomeration and porosity compared to SiO2. Meanwhile, electrochemical impedance spectroscopy (EIS) analysis shows that the ionic conductivity of PE-HCl-SiO2 is higher than PE but slightly lower than PE-SiO2.
Omed Gh. Abdullah; Dlear R. Saber; Sherzad A. Taha
Abstract
Optical properties of solid polymer electrolyte films based on polyvinyl alcohol (PVA) with different concentration of cobalt nitrate Co(NO3)2 (3-12) wt% have been studied. The parameters such as refractive index, extinction coefficient, and optical energy gap were investigated by using the absorbance ...
Read More
Optical properties of solid polymer electrolyte films based on polyvinyl alcohol (PVA) with different concentration of cobalt nitrate Co(NO3)2 (3-12) wt% have been studied. The parameters such as refractive index, extinction coefficient, and optical energy gap were investigated by using the absorbance measurement from UV-visible spectrophotometer in the spectral range (190-790) nm. This study reveals that the optical properties of PVA are affected by salt concentration, where the absorption increases and absorption edge decreases as Co(NO3)2 concentration increases. The refractive index, and extinction coefficient values were found to increase with increasing Co(NO3)2 percentage. The optical energy gaps have been investigated and showed a clear dependence on the Co(NO3)2 concentration. The interpreted absorption mechanism is both direct- and indirect- electron transition, and it was found to be decreasing with increasing Co(NO3)2 concentration. The single oscillator model has been used to analyses the dispersion behavior of the refractive index, and the dispersion parameters are calculated.