Mohini Mishra; Raju Kumar Gupta
Abstract
The present work demonstrates a simple and efficient route to synthesize a variety of barium titanate (BaTiO3) nanostructures including nanowires, nanoswords, nanostars, nanocubes, and nanoparticles by a facile hydrothermal approach. The experiments showed that different morphologies can easily be tuned ...
Read More
The present work demonstrates a simple and efficient route to synthesize a variety of barium titanate (BaTiO3) nanostructures including nanowires, nanoswords, nanostars, nanocubes, and nanoparticles by a facile hydrothermal approach. The experiments showed that different morphologies can easily be tuned by varying the concentration of precursors, i.e., hydrogen titanate (H2Ti3O7) and barium hydroxide octahydrate (Ba(OH)2.8H2O), while keeping the molar ratio, reaction temperature and time fixed. The structure and morphology of BaTiO3 were characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The results indicate that BaTiO3 nanowires are in cubic phase with an average diameter of 80-100 nm. The shape of BaTiO3 changes from nanowires to nanoparticles with an increase in Ba(OH)2.8H2O concentration from 0.08 M to 0.51 M. Two possible mechanisms, in-situ topotactic transformation reaction and dissolution-deposition reaction have been suggested for different morphologies of BaTiO3. The synthesized 0-D and 1-D BaTiO3 nanostructures are promising materials for many applications because of their excellent dielectric, ferroelectric and piezoelectric properties. The present work will open a new route to single reaction parameter dependent synthesis of 0- and 1-D BaTiO3 nanostructures which can find a range of applications including electronics, catalysis, energy harvesting, etc.
Mrinal Kanti Adak; Prasanta Dhak; Atreyee Kundu; Debasis Dhak
Abstract
In this present work, nanocrystalline Co 2+ and Ta 5+ substituted barium bismuth niobate Ba0.5Co0.5Bi2NbTaO9 was synthesized by chemical process. Room temperature single phase, tetragonal structure was confirmed using X-ray diffraction (XRD) study. Average crystallite and particle sizes were found to ...
Read More
In this present work, nanocrystalline Co 2+ and Ta 5+ substituted barium bismuth niobate Ba0.5Co0.5Bi2NbTaO9 was synthesized by chemical process. Room temperature single phase, tetragonal structure was confirmed using X-ray diffraction (XRD) study. Average crystallite and particle sizes were found to be 33 nm and 40 nm, when analyzed through XRD and transmission electron microscopy (TEM) respectively. Field emission scanning electron microscopy (FESEM) was used for micro-structural investigation of samples sintered at 950?C for 4h. The investigation revealed that the material was exhibiting high dielectric constant value of 1017 at Curie temperature (Tc), 500?C when measured at 10 kHz. Impedance spectroscopy analysis showed that above 425?C, the material exhibited both bulk and grain boundary conductivities which were evidenced from FESEM studies. Density of states, minimum hoping distance, binding energy etc. were studied along with other electrical properties from impedance analysis. Hysteresis behavior was also investigated using polarization study.
M. Roy; S. Sahu; S. K. Barbar; S. Jangid
Abstract
Polycrystalline ceramic samples of pure and Cu +2 doped Bi4V2-xCuxO11(x=0.0 and 0.02) have been synthesized by standard solid state reaction method using high purity oxides. The dielectric constant and dielectric loss and hence ac conductivity as a function of frequency and temperature have been measured. ...
Read More
Polycrystalline ceramic samples of pure and Cu +2 doped Bi4V2-xCuxO11(x=0.0 and 0.02) have been synthesized by standard solid state reaction method using high purity oxides. The dielectric constant and dielectric loss and hence ac conductivity as a function of frequency and temperature have been measured. The dielectric studies indicate that the material is highly lossy and hence its ac conductivity increases with the increase of temperature. The dc conductivity of material has been measured as a function of temperature from room temperature to 653 K and its activation energy was calculated using the relation σ = σo exp (- Ea/kT). The dc conductivity increases with the substitution of Cu on the vanadium site. The Modulated Differential Scanning Calorimetry (MDSC) has been used to investigate the effect of substitution on the phase transition of the compounds. The results are discussed in detail.
Subhadarsani Sahoo; Dhiren K. Pradhan; R. N. P. Choudhary; B. K. Mathur
Abstract
The polycrystalline sample of (K0.5Bi0.5)(Fe0.5Nb0.5)O3 was synthesized by a high- temperature solid-state reaction technique. The material crystallizes in cubic structure at room temperature. The dielectric properties of the material were investigated in a temperature range from 30-200 ºC in the ...
Read More
The polycrystalline sample of (K0.5Bi0.5)(Fe0.5Nb0.5)O3 was synthesized by a high- temperature solid-state reaction technique. The material crystallizes in cubic structure at room temperature. The dielectric properties of the material were investigated in a temperature range from 30-200 ºC in the frequency range (102–107 Hz). Impedance data is well fitted using proper equivalent circuit composed of a parallel resistance and capacitance in series with a parallel resistance, constant phase element and a capacitance. The compound shows a typical negative temperature coefficient of resistance type (NTCR) behavior like that of semiconductors. Modulus spectroscopy and dielectric conductivity formalism were employed to study dielectric relaxation phenomena in the material. The frequency dependence of conductivity is well fitted to Jonscher’s single power law.
Arun Chamola; Hemant Singh; U.C. Naithani
Abstract
(1−x)BaTiO3–xPZT(65/35) ceramics were prepared by high temperature solid state reaction technique. Structural properties of the compounds were examined using an X-ray diffraction (XRD) technique to confirm the formation of phase at room temperature. Detailed studies of dielectric properties ...
Read More
(1−x)BaTiO3–xPZT(65/35) ceramics were prepared by high temperature solid state reaction technique. Structural properties of the compounds were examined using an X-ray diffraction (XRD) technique to confirm the formation of phase at room temperature. Detailed studies of dielectric properties of (1−x) BaTiO3–xPZT(65/35) for all compositions were in temperature range 30-200 o C reveal that the compound have transition temperature well above at the room temperature. While pure BaTiO3 ceramics exhibited a sharp phase transformation expected for normal ferroelectrics, phase transformation behavior of the (1−x)BaTiO3–xPZT(65/35) solid solutions became more diffuse with increasing PZT(65/35) contents. The diffusivity of the dielectric peaks in the compound exhibited the values between 1 and 2 where the higher value indicates the greater disorder in the systems. This was primarily evidenced by an increased broadness in the dielectric peak, with a maximum peak width occurring at x = 0.5. The temperature dependence of ac conductivity indicated that the electrical conductivity decrease above Tc on increasing the PZT(65/35) contents. This increase in the conductivity is attributed to the increase in polarizability of the materials around Tc, due to oxygen vacancies.