Khalid Sultan; Rubiya Samad; Feroz A. Najar; Shohaib Abass; Saima Jahan; Mudasir Rashid Rather; M. Ikram
Abstract
Polycrystalline bulk samples of chemical composition La1-xSrxVO4 (x = 0.0, 0.1, 0.3, 0.5) were prepared by solid state reaction method. The Morphology and structure wascharacterised by Scanning Electronic microscopy and powder X-ray diffraction respectively. All the prepared material were single-phase ...
Read More
Polycrystalline bulk samples of chemical composition La1-xSrxVO4 (x = 0.0, 0.1, 0.3, 0.5) were prepared by solid state reaction method. The Morphology and structure wascharacterised by Scanning Electronic microscopy and powder X-ray diffraction respectively. All the prepared material were single-phase and co-doped ions were successfully incorporated in LaVO4 lattice. The EDAX spectrum shows that the percentage composition of given elements in the proposed formula was in good agreement with the corresponding values determined experimentally. The Raman spectra of LaVO4 reflect the VO4 type structure that consists of four different V–O bands. The prominent Raman band at about 860 cm -1 can be assigned to the symmetric V–O stretching mode while the weak Raman band at 792 cm -1 is assigned to antisymmetric V–O stretching mode. With increase in Sr doping, optical band gap was found to decrease resulting in increase in conductivity. The dielectric constant as well as dielectric loss shows a relaxor type of behaviour for higher doping concentration which can be attributed to the chemical pressure induced in LaVO4 with the doping of Sr ions. The studies performed on ac conductivity identifies that the conduction mechanism follows the charge hopping between localised states and follow the small polaron conduction.

Megha P. Mahabole; Ravindra U. Mene;Rajendra S. Khairnar
Abstract
This present paper deals with the investigation on effective utilization of cobalt doped hydroxyapatite (Co-HAp) thick films for improvement in gas sensing and dielectric properties. Chemical precipitation route is used for synthesis of nanocrystalline hydroxyapatite (HAp) bioceramic and ion exchange ...
Read More
This present paper deals with the investigation on effective utilization of cobalt doped hydroxyapatite (Co-HAp) thick films for improvement in gas sensing and dielectric properties. Chemical precipitation route is used for synthesis of nanocrystalline hydroxyapatite (HAp) bioceramic and ion exchange process is carried out for the partial substitution of cobalt ions in HAp matrix. Hydroxyapatite thick films, prepared using screen printing technique, are used as samples for gas sensing and dielectric measurements. The structural identification of HAp thick films is carried out using X-ray diffraction and the presence of functional groups in pure and doped HAp is confirmed by means FTIR spectroscopy. The surface morphology of these films is visualized by means of SEM and AFM analysis. Detailed study on CO2 gas sensing performance of pure and Co-HAp thick films is carried out wherein operating temperature, response/recovery times and gas uptake capacity are determined. It is remarkable to note that Co-HAp film with 0.01M cobalt concentration shows maximum sensitivity to CO2 gas at relatively lower operating temperature of 135 o C in comparison with pure HAp as well as other concentrations of cobalt doped HAp films. The frequency dependent variation of dielectric constant (K) and dielectric loss (tan δ) of HAp thick films are also studied in the range of 10 Hz-1MHz at room temperature. The result shows that increase of cobalt concentration in HAp matrix leads to increase in dielectric constant. The study reveals clear influence of cobalt substitution on dielectric properties and gas sensing properties HAp matrix.