Vinayak M Adimule; Debdas Bhowmik; Adarsha Haramballi Jagadeesha
Abstract
Gadolinium (Gd) doped titanate nanostructures (NS) with a new set of 10-50 wt. % of Gd were synthesized by microwave-assisted hydrothermal and reduction using hydrazine hydrate. The crystal structure has been evaluated with SEM (scanning electron microscopy) analysis exhibited rod like geometry of nanoparticles ...
Read More
Gadolinium (Gd) doped titanate nanostructures (NS) with a new set of 10-50 wt. % of Gd were synthesized by microwave-assisted hydrothermal and reduction using hydrazine hydrate. The crystal structure has been evaluated with SEM (scanning electron microscopy) analysis exhibited rod like geometry of nanoparticles (NPs). XRD (X-ray diffraction spectroscopy) analysis of GdTiO3 and undoped titanate nanostructure (NS) intense peak exhibited crystal tetragonal structure. CV (cyclic voltammetry) exhibited an oxidation potential of 50 wt. % of GdTiO3 was found to be - 0.54 eV. UV-Visible spectroscopic revealed absorptivity of 50 wt. % of GdTiO3 was found to be 650 nm (visible region) and undoped titanate absorptivity at 320 nm (UV region). The pelletized nanostructures of GdTiO3 were investigated for current-voltage (I-V), capacitance-voltage (C-V), resistance-voltage (R-V) measurements, which showed frequency range in between 1 kHz to 2 MHz and 50 wt. % GdTiO3 NS showed a decreasing trend in admittance value with an increase in frequency. However, an increase in the conductance, power dissipation values with a decrease in resistivity, and increase in the frequency has been noticed which embark considerable variation in conductivity and power dissipation in GdTiO3 NS. The results from the plots of current-voltage (I-V), capacitance-voltage (C-V), and bias voltage with an applied frequency of the GdTiO3 NS has been discussed.

Pankaj Srivastava; Subhra Dhar; Neeraj K Jaiswal
Abstract
We investigate Ag atom bonding to zigzag graphene ribbons and properties of these systems to increase the understanding of spin transport. Results concerning the total energies preferred binding sites, equilibrium distances, and electronic character for Ag adatoms on ZGNR are predicted in this study. ...
Read More
We investigate Ag atom bonding to zigzag graphene ribbons and properties of these systems to increase the understanding of spin transport. Results concerning the total energies preferred binding sites, equilibrium distances, and electronic character for Ag adatoms on ZGNR are predicted in this study. The study also provides insight into the diffusion kinetics of adsorbed Ag atoms on zigzag edged graphene nanoribbons. The ribbons considered in the present work have an antiferromagnetic ground state and undergoes transition from semiconducting to half-metallic on spin polarization. DOS profiles of Ag-adsorbed ZGNR at the bridge site reveals low DOS across the Fermi level ensuring its semiconducting character, validated from the unpolarized spin calculations. Though nonlinear at biases less than 1V in the FM and AFM calculations, the spin current of atop adsorbed ribbon increases rapidly with the increase of the bias voltage beyond 1V.