Volume 16 (2025)
Volume 15 (2024)
Volume 14 (2023)
Volume 13 (2022)
Volume 12 (2021)
Volume 11 (2020)
Volume 10 (2019)
Volume 9 (2018)
Volume 8 (2017)
Volume 7 (2016)
Volume 6 (2015)
Volume 5 (2014)
Volume 4 (2013)
Volume 3 ( 2012)
Volume 2 (2011)
Volume 1 (2010)
Chemically Synthesized Ag/PPy-PVA Polymer Nanocomposite Films As Potential EMI Shielding Material In X-band

Jyoti Srivastava; Pawan Kumar Khanna; Priyesh V More; Neha Singh

Volume 8, Issue 1 , January 2017, , Pages 42-48

https://doi.org/10.5185/amlett.2017.6486

Abstract
  Silver/Polypyrrole/Polyvinylalcohol polymer nanocomposite films were prepared by in-situ polymerization of pyrrole with variable loading of silver nanoparticles from 0.5-10%.  The conducting films prepared from the nanocomposite solution were flexible, light weight, thermally stable and showed high ...  Read More

Influence Of Conducting Polymer On Mechanical, Thermal And Shape Memory Properties Of Polyurethane/polythiophene Blends And Nanocomposite

Rabia Sattar; Ayesha Kausar; Muhammad Siddiq

Volume 7, Issue 4 , April 2016, , Pages 282-288

https://doi.org/10.5185/amlett.2016.6198

Abstract
  Polyurethane/polythiophene (PU/PTh) blends and nanocomposites were prepared by solution mixing and in situ polymerization, respectively and were investigated for mechanical, thermal, electrical and shape memory properties. Formation of blends and composites was supported by FTIR analysis. Surface morphology ...  Read More

Optical And Electrical Properties Of Conducting Polyaniline Nanofibers Synthesized By Interfacial And Rapid Mixing Polymerization

Suyog M. Pethe; Subhash B. Kondawar

Volume 5, Issue 12 , December 2014, , Pages 728-733

https://doi.org/10.5185/amlett.2014.amwc550

Abstract
  One dimensional conducting polymer nanostructures have been the focus of quite extensive studies worldwide due to their high aspect ratio, high porosity apart from high surface area to volume ratio. Conducting polyaniline nanofibers can be synthesized by various methods. In this paper, we report the ...  Read More

Nanocrystalline Nickel Ferrite Reinforced Conducting Polyaniline Nanocomposites

Subhash B. Kondawar; Arti I. Nandapure; Bharti I. Nandapure

Volume 5, Issue 6 , June 2014, , Pages 339-344

https://doi.org/10.5185/amlett.2014.amwc.1035

Abstract
  Nanocrystalline nickel ferrite (NiFe2O4) powder of crystallite size ~20 nm was synthesized by refluxing method. Electrically conductive polyaniline-nickel ferrite (PANI/NiFe2O4) nanocomposites have been synthesized by an in-situ polymerization of aniline monomer in the presence of as-prepared NiFe2O4 ...  Read More

Swift Heavy Ion Irradiation Induced Structural, Optical And Conformational Modifications In Conducting Polymer Nanostructures

A. Kumar;Somik Banerjee

Volume 4, Issue 6 , June 2013, , Pages 433-437

https://doi.org/10.5185/amlett.2012.ib.109

Abstract
  Structural and conformational modifications in conducting polymer nanostructures viz., Polyaniline (PAni) nanofibers induced by swift heavy ion (SHI) irradiation have been investigated employing TEM, XRD, UV-Vis, FTIR and micro-Raman spectroscopy. Upon interaction with the highly energetic ions, PAni ...  Read More

Morphology and electrical conductivity of self- doping polyanilines synthesized via self- assembly process

S.R. Kargirwar; S.R. Thakare; M.D. Choudhary; S.B. Kondawar; S.R. Dhakate

Volume 2, Issue 6 , December 2011, , Pages 397-401

https://doi.org/10.5185/amlett.2011.4245

Abstract
  Copolymerization of self doping monomer aniline and oxalic acid (OA)/ acetic acid (AA) in different molar ratio via the self-assembly process were conducted to prepare self-doping polyanilines (SD-PANIs). In this polymerization process, AA or OA plays the roles of surfactant and dopant for the self-doping ...  Read More

Microwave assisted hydrothermally synthesized nanostructure zinc oxide reinforced polyaniline nanocomposites

Subhash B. Kondawar; Smita A. Acharya; Sanjay R. Dhakate

Volume 2, Issue 5 , November 2011, , Pages 362-367

https://doi.org/10.5185/amlett.2011.9107am2011

Abstract
  ZnO in different nanostructures were synthesized by microwave assisted hydrothermal route. Different experimental conditions such as microwave irradiation power, exposure time have been investigated to reveal the process of formation of the ZnO nanostructures. It was revealed that the microwave exposure ...  Read More