Keywords : conducting polymer


Chemically Synthesized Ag/PPy-PVA Polymer Nanocomposite Films As Potential EMI Shielding Material In X-band

Jyoti Srivastava; Pawan Kumar Khanna; Priyesh V More; Neha Singh

Advanced Materials Letters, 2017, Volume 8, Issue 1, Pages 42-48
DOI: 10.5185/amlett.2017.6486

Silver/Polypyrrole/Polyvinylalcohol polymer nanocomposite films were prepared by in-situ polymerization of pyrrole with variable loading of silver nanoparticles from 0.5-10%.  The conducting films prepared from the nanocomposite solution were flexible, light weight, thermally stable and showed high hydrophobicity/hydrophilicity ratio. X-Ray diffraction measurement showed formation of fcc silver nanoparticles with particle size in the range of about 20-40 nm. UV-visible spectroscopy revealed the characteristic bands of Ag nanoparticles and polypyrrole in the so obtained co-polymer nanocomposites. The SEM studies of the nanocomposite films showed that the filler material was well conjugated in the Polymer matrix. Vector Network Analyser showed Electromagnetic shielding efficiency (EMI) efficiency as high as -35 dB in the X band (8-12GHz).

Influence Of Conducting Polymer On Mechanical, Thermal And Shape Memory Properties Of Polyurethane/polythiophene Blends And Nanocomposite

Rabia Sattar; Ayesha Kausar; Muhammad Siddiq

Advanced Materials Letters, 2016, Volume 7, Issue 4, Pages 282-288
DOI: 10.5185/amlett.2016.6198

Polyurethane/polythiophene (PU/PTh) blends and nanocomposites were prepared by solution mixing and in situ polymerization, respectively and were investigated for mechanical, thermal, electrical and shape memory properties. Formation of blends and composites was supported by FTIR analysis. Surface morphology of prepared samples was clarified by scanning electron microscopy (SEM). Homogeneous morphology of the composites was observed compared to blends due to well dispersion of NH2 functionalized MWCNTs attributed to introduction of urea linkages between the functionalized nanotubes and the NCO-terminated PU. Smooth morphology of the composites resulted for the significant improvement of the mechanical properties. Thermal stability of the blends and composites was found increased with PTh content. According to differential scanning calorimetry (DSC), an increase in glass transition, melting and crystallization temperature was observed for composites with PTh addition. Maximum shape recoverability (92 %) was exhibited by the PU/PTh composite with 1 wt. % PTh loading. 

Optical And Electrical Properties Of Conducting Polyaniline Nanofibers Synthesized By Interfacial And Rapid Mixing Polymerization

Suyog M. Pethe; Subhash B. Kondawar

Advanced Materials Letters, 2014, Volume 5, Issue 12, Pages 728-733
DOI: 10.5185/amlett.2014.amwc550

One dimensional conducting polymer nanostructures have been the focus of quite extensive studies worldwide due to their high aspect ratio, high porosity apart from high surface area to volume ratio. Conducting polyaniline nanofibers can be synthesized by various methods. In this paper, we report the preparation of polyaniline nanofibers with an average diameter of 40–70 nm by two different simple approach rapid mixing and interfacial polymerization. The key to producing polyaniline nanofibers is to suppress secondary growth. Based on this, interfacial polymerization and rapidly mixed reactions have been developed that can readily produce nanofibers by slightly modifying the conventional chemical synthesis of polyaniline without the need for any template or structural directing agent. Synthesized polyaniline (PANI) nanofibers were characterized by FTIR spectroscopy, X-ray diffraction, transmission electron microscopy for their structural and UV-Vis absorption spectroscopy for optical properties. Direct and indirect transition energy gaps were determined from their Tauc plots. The absorption spectra show a linear fit for the transition. Electrical properties of the synthesized polyaniline nanofibers have been studied and the Arrhenius plots of electrical conductivity for the samples synthesized by rapid mixing and interfacial polymerization method show an approximate equal in their activation energy. The results obtained from optical and electrical properties are well compared, correlated and explained with respect to interfacial and rapid mixing polymerization techniques.

Nanocrystalline Nickel Ferrite Reinforced Conducting Polyaniline Nanocomposites

Subhash B. Kondawar; Arti I. Nandapure; Bharti I. Nandapure

Advanced Materials Letters, 2014, Volume 5, Issue 6, Pages 339-344
DOI: 10.5185/amlett.2014.amwc.1035

Nanocrystalline nickel ferrite (NiFe2O4) powder of crystallite size ~20 nm was synthesized by refluxing method. Electrically conductive polyaniline-nickel ferrite (PANI/NiFe2O4) nanocomposites have been synthesized by an in-situ polymerization of aniline monomer in the presence of as-prepared NiFe2O4 in different weight percentage (5%, 10%, and 15%). These nanocomposites were subsequently characterized for morphological, crystalline, structural, electrical and magnetic properties by Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Four Probe Resistivity (FPR) and Vibrating Sample Magnetometer (VSM). Existence of NiFe2O4 in the nanocomposites was confirmed by XRD, FTIR and TEM analysis. The change in morphology with crystallite size ? 50 nm was observed for the nanocomposites clearly indicate the coating of PANI on  NiFe2O4 . Nanocomposites showed increase in saturation magnetization as compared to that of PANI and increase in electrical conductivity as compared to that of  NiFe2O4  indicating the synergistic effect of individual components. The saturation magnetization drastically increased as nickel ferrite content changed from 5 to 15% in nanocomposites. The conductivity of nanocomposites increased with temperature, exhibiting typical semiconductor behavior. The nanocomposites show semiconducting and ferromagnetic behaviour. The electrical conductivity of nanocomposites decreased from 1.089 to 0.268 S/cm, but saturation magnetization increased from 0.97 to 2.803 emu/g, when ferrite content changed from 5 to 15 wt%, indicates such nanocomposites are good for electromagnetic devices.

Swift Heavy Ion Irradiation Induced Structural, Optical And Conformational Modifications In Conducting Polymer Nanostructures

A. Kumar;Somik Banerjee

Advanced Materials Letters, 2013, Volume 4, Issue 6, Pages 433-437
DOI: 10.5185/amlett.2012.ib.109

Structural and conformational modifications in conducting polymer nanostructures viz., Polyaniline (PAni) nanofibers induced by swift heavy ion (SHI) irradiation have been investigated employing TEM, XRD, UV-Vis, FTIR and micro-Raman spectroscopy. Upon interaction with the highly energetic ions, PAni nanofibers are fragmented and get amorphized. The local range of order is found to decrease with a corresponding increase in the concentration of point defects and dislocations leading to the enhancement in strain. Vibrational spectra of the pristine and SHI irradiated PAni nanofibers studied using FTIR and micro-Raman (μR) spectroscopy indicate conformational changes in PAni nanofibers upon SHI irradiation. Loss of π-stacking due to the enhancement in the torsion angle between Cring-N-Cring upon irradiation is indicative of strong electrostatic interaction between the electron rich C-N site in the aromatic rings of PAni chains and the ion beam. The most significant variation in PAni nanofibers upon SHI irradiation is the transformation of para di-substituted benzene (benzenoid) structure of PAni into the quinone di-imine (quinoid) structures; a phenomenon that has been simultaneously observed in both the FTIR and Raman spectra. The presence of two main peaks representing the same structures in PAni nanofibers in both the Raman and IR spectra is because of the presence of delocalized sp2 phases and local disorder in PAni nanofibers, which gives rise to electrical and mechanical fluctuations that destroy the symmetry rules.

Morphology and electrical conductivity of self- doping polyanilines synthesized via self- assembly process

S.R. Kargirwar; S.R. Thakare; M.D. Choudhary; S.B. Kondawar; S.R. Dhakate

Advanced Materials Letters, 2011, Volume 2, Issue 6, Pages 397-401
DOI: 10.5185/amlett.2011.4245

Copolymerization of self doping monomer aniline and oxalic acid (OA)/ acetic acid (AA) in different molar ratio via the self-assembly process were conducted to prepare self-doping polyanilines (SD-PANIs). In this polymerization process, AA or OA plays the roles of surfactant and dopant for the self-doping PANIs. The morphology, UV–Vis absorption behaviour, crystalline density and electrical conductivity of self-doped PANIs are investigated. Depending on molar ratio of aniline to OA/AA, nanotubes structure of polyaniline (PANI) can be formed. Higher concentration of OA leads to increase in the diameter of the tubes in which micelles act as the template in the self-assembly of PANI to form nanotube structures, whereas increase in concentration of AA leads to change the structure of polyaniline from microspheres to nanotubes. The nanotubular structure aggregates to form a bundle structure as the concentration of AA increases. More uniform structure is observed in case of OA than that of AA, which may be due to the bulky structure of OA than AA. Higher absorption intensity in UV-Vis spectra of self-doping PANIs was observed for lower concentration of OA/AA. The crystal structure for the synthesized self-doped PANIs is orthorhombic and the C-N-C angle is larger. High electrical conductivity of the self-doped PANIs was observed as a function of degree of doping.

Microwave assisted hydrothermally synthesized nanostructure zinc oxide reinforced polyaniline nanocomposites

Subhash B. Kondawar; Smita A. Acharya; Sanjay R. Dhakate

Advanced Materials Letters, 2011, Volume 2, Issue 5, Pages 362-367
DOI: 10.5185/amlett.2011.9107am2011

ZnO in different nanostructures were synthesized by microwave assisted hydrothermal route. Different experimental conditions such as microwave irradiation power, exposure time have been investigated to reveal the process of formation of the ZnO nanostructures. It was revealed that the microwave exposure time plays a vital role in determining the diameter of the rods. The interaction of microwaves with the growth units of ZnO was systematically investigated to explain formation of different structural geometry of ZnO on nanoscale. ZnO nanostructures consisted of flower-like, sword-like, needle-like and rods-like structures were prepared by microwave assisted hydrothermal process at different conditions of microwave power and irradiation time. The ZnO nanostructures are in hexagonal phase. It is considered that microwave can interact with growth units of ZnO to generate active centers on the surface of ZnO nuclei so that needle-like ZnO rods are created on those sites, resulting in the formation of the flower-like ZnO nanostructures. Polyaniline - ZnO nanocomposites (PZ) in various weight % of nanostructure ZnO were synthesized by the chemical oxidation method in sulphuric acid medium using ammonium persulphate as oxidant at 276K. The synthesized polymer nanocomposites were characterized by XRD, FTIR and UV-VIS spectroscopy.