Ryousuke Ishikawa; Hiroki Nishida; Hiro Fukushima; Sho Watanabe; Sohei Yamazaki; Gilgu Oh; Nozomu Tsuboi
Abstract
In order to improve the properties of the graphene transparent conductive film, we developed a process of O2 plasma patterning graphene using a metal mesh as an etching mask. The CVD growth conditions of high-quality multilayer graphene samples consisting of 400 layers or more were found using Ni foil, ...
Read More
In order to improve the properties of the graphene transparent conductive film, we developed a process of O2 plasma patterning graphene using a metal mesh as an etching mask. The CVD growth conditions of high-quality multilayer graphene samples consisting of 400 layers or more were found using Ni foil, and the R sheet = 3.4 ± 0.6 Ω/sq. was achieved. The best performance of graphene micromesh based transparent conductive films so far was R sheet = 22.2 Ω/sq. at T = 47.1 ± 1.9 %. According to theoretical calculations based on the combined resistance of the two-dimensional resistance lattice circuit, a combined resistance of 46.8 Ω can be realized at T = 90%.
