Document Type : Research Article

Authors

1 Department of Physics, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India

2 Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India

Abstract

Porous Anodic Alumina membranes (PAAM) have a significant role in nanoscale devices due to their easily tunable structural aspects and variety of applications in nanotechnology. The variable process parameters in the synthesis of PAAM were anodization potential, temperature, duration and nature of electrolyte concentration. Pores of different sizes and geometry were obtained by varying these anodization parameters. In the present work, PAAM were prepared in 0.3 M of sulphuric, oxalic, chromic and phosphoric acids as electrolyte and with anodization potentials (20, 40, 50 and 90 V) at a temperature of 8 °C. Field-emission Scanning Electron Microscopy investigations confirm the pore formation in PAAM layers. Pore ordering was calculated using the Fast Fourier transform (FFT) of top view SEM micrographs. Pore arrangement analysis of PAAM was studied using Image-J and WSxM software. Morphological features of PAAM such as pore diameter, interpore distance, porosity and pore density were calculated in all electrolytes. Results show that, PAAM formed in oxalic acid having high regularity ratio and circularity compared with other cases.

Keywords

Bai, A.; Hu, C.C.; Yang, Y.F.; Lin, C.C.; Electrochimica Acta, 2008, 53, 2258.
2.     Reddy, P.R.; Ajith, K.M.; Udayashankar, N.K.; Journal of Materials Science: Materials in Electronics, 2016,27, 5331.
3.     Bruera, F.A.; Kramer, G.R.; Vera, M.L.; Ares, A.E.; Coatings, 2019, 9, 115.
4.     Stempniowski, W.J.; Bojar, Z.; Surface and Coatings Technology, 2011, 206, 265.
5.     Zaraska, L.; Stempniowski, W.J.; Ciepiela, E.; Sulka, G.D.; Thin Solid Films, 2013, 534, 155.
6.     Bruera, F.A.; Kramer, G.R.; Vera, M.L.; Ares, A.E.; Surfaces and Interfaces,2020, 18, 100448.
7.     Stempniowski, W.J.; Moneta, M.; Norek, M.; Michalska-Domanska, M.; Scarpellini, A.; Salerno, M.; Electrochimica Acta, 2016,211, 453.
8.     Reddy, P.R.; Ajith, K.M.; Udayashankar, N.K.; Ceramics International, 2016, 42, 17806.
9.     Bruera, F.A.; Kramer, G.R.; Vera, M.L.; Ares, A.E.; Coatings, 2021, 11, 309.
10.   Cheng, C.; Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation, Springer, 2015.
11.   Jani, A.M.M.; Losic, D.; Voelcker, N.H.; Progress in Materials Science, 2013, 58, 636.
12.   Santos, A.; Balderrama, V.S.; Alba, M.; Formentín, P.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L.F.; Advanced Materials, 2012, 24, 1050.
13.   Losic, D.; Simovic, S.; Expert Opinion on Drug Delivery, 2009, 6, 1363.
14.   St˛epniowski, W.J.; Salerno, M.; Manufacturing Nanostructures, 2014, 321.
15.   Sulka, G.D.; Stempniowski, W.J.; Electrochimica Acta, 2009, 54, 3683.
16.   Reddy, P.R.; Ajith, K.M.; Udayashankar, N.K.; Applied Physics A, 2018, 124, 765.
17.   Jessensky, O.; Müller, F.; Gösele, U.; Applied Physics Letters, 1998, 72, 1173.
18.   Alkire, R.C.; Gogotsi, Y.; Simon, P.; Nanostructured Materials in Electrochemistry, John Wiley & Sons, 2008.
19.   Sulka, G.D.; Parkola, K.G.; Thin Solid Films, 2006, 515, 338.
20.   Ramana Reddy, P.; Ajith, K.M.; Udayashankar, N.K.; Materials Science in Semiconductor Processing, 2020, 106, 104755.
21.   Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T.; Advanced Materials, 2001, 13, 189.
22.   Lee, W.; Ji, R.; Ross, C.A.; Gösele, U.; Nielsch, K.; Small, 2006, 2, 978.
23.   Montero Moreno, J.M.; Waleczek, M.; Martens, S.; Zierold, R.; Görlitz, D.; Martínez, V.V.; Prida, V.M.; Nielsch, K.; Advanced Functional Materials, 2014, 24, 1857.
24.   Oshima, H.; Kikuchi, H.; Nakao, H.; Itoh, K.; Kamimura, T.; Morikawa, T.; Matsumoto, K.; Umada, T.; Tamura, H.; Nishio, K.; Applied Physics Letters, 2007, 91, 022508.
25.   Reddy, P.R.; A.K.M.; Udayashankar, N.K.; Advanced Materials Letters, 2016, 7, 398.
26.   Prida, V.M.; Vega, V.; García, J.; Iglesias, L.; Hernando, B.; Minguez-Bacho, I.; Magnetic Nano-and Microwires, Elsevier, 2015, pp.3-39.
27.   Chi, C.S.; Lee, J.H.; Kim, I.; Oh, H.J.; Journal of Materials Science & Technology, 2015, 31, 751.
28.   Rashidi, F.; Masuda, T.; Asoh, H.; Ono, S.; Surface and Interface Analysis, 2013, 45, 1490.
29.   Abd-Elnaiem, A.M.; Mebed, A.M.; Gaber, A.; Abdel-Rahim, M.A.; Journal of Alloys and Compounds, 2016, 659, 270.
30.   Stempniowski, W.J.; Zasada, D.; Bojar, Z.; Surface and Coatings Technology, 2011, 206, 1416.
31.   Reddy, P.R.; Ajith, K.M.; Udayashankar, N.K.; Materials Today: Proceedings, 2019, 19, 2633.
32.   Bruera, F.A.; Kramer, G.R.; Vera, M.L.; Ares, A.E.; Superlattices and Microstructures, 2019, 130, 103.
33.   Stempniowski, W.J.; Moneta, M.; Norek, M.; Michalska-Domanska, M.; Scarpellini, A.; Salerno, M.; Electrochimica Acta, 2016, 211, 453.
34.   Vega, V.; García, J.; Montero-Moreno, J.M.; Hernando, B.; Bachmann, J.; Prida, V.M.; Nielsch, K.; ACS Applied Materials & Interfaces, 2015, 7, 28682.
35.   Stempniowski, W.J.; Doma. ń. ska M.; Norek, M.; Czujko, T.; Materials Letters, 2014, 117, 69.
36.   Shimizu, B.K.; Kobayashi, K.; Thompson, G.E.; Wood, G.C.; Philosophical Magazine B, 1991, 64, 345.
37.   Yang, Z.B.; Hu, J.C.; Li, K.Q.; Zhang, S.Y.; Fan, Q.H.; Liu, S.A.; in IOP Conference Series: Materials Science and Engineering IOP Publishing, 2017, p. 012003.
38.   Searson, P.C.; Moffat, T.P.; Critical Reviews in Surface Chemistry, 1994, 3, 171.
39.   Thompson, G. E.; Wood, G. C.; in Treatise on Materials Science and Technology, Edited by J. C. Scully (Elsevier, 1983), pp. 205-329.
40.   Stempniowski, W.J.; Nowak-St˛epniowska, A.; Bojar, Z.; Materials Characterization, 2013, 78, 79.
41.   Ciepiela, E.; Zaraska, L.; Sulka, G.D.; GridSpace2/Collage Executable Paper Http://Collage. Cyfronet. Pl/Hillebrand-Grains 2011.
42.   Zaraska, L.; Stempniowski, W.J.; Sulka, G.D.; Ciepiela, E.; Jaskuła, M.; Appl. Phys. A, 2014, 114, 571.
43.   Stempniowski, W. J.; Choi, J.; Yoo, H.; Doma. ń. ska M.; Chilimoniuk, P.; Czujko, T.; Materials Letters, 2016, 164, 176.
44.   Suchitra, S.M.; Reddy, P.R.; Udayashankar, N. K.; Materials Today: Proceedings, 2016, 3, 2042.
45.   Ren, X.; Huang, X.; Zhang, H.; He, M.; Frontiers of Materials Science in China, 2007, 1, 312.
46.   Rathmell, A.R.; Bergin, S. M.; Hua, Y.L.; Li, Z.Y.; Wiley, B.J.; Advanced Materials, 2010, 22, 3558.