Document Type : Research Article

Authors

Abstract

A precipitation method was used to synthesize MCM-41. Then, the obtained mesoporous was modified using layered double hydroxide (MCM-41@LDH). The novel mesoporous MCM-41@LDH was successfully applied for adsorption of lysozyme (LYS) at different conditions such as adsorbent amount, pH of solution, stirrer time, and concentration of protein which were designed using central composite design (CCD). Furthermore, the chief characteristics of new adsorbent were identified using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) analyses. The maximum adsorption of LYS, predicted by CCD was 0.025 g of support, LYS concentration of 300 mg L-1, pH 7.50, and stirrer time of 55 min. The isotherm, kinetic, and thermodynamic equations of LYS on MCM-41@LDH were surveyed. It was established that Freundlich isotherm (R2=0.997) and second-order kinetic (R2=0.997) were the best data. Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) values were obtained as -17334.5 kJ/mol K (at 298.15 K), -17346.3, and -0.04 kJ/mol, respectively. Based on the achieved results including high adsorption intensity of support (Freundlich constant, n=2.46) and the negative value of ΔG˚ (spontaneity of the adsorption process), it suggests that MCM-41@LDH should be a favorable candidate for LYS-chromatography and separation applications.

Keywords

Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M.; J. Mol. Catal. A-Chem.,2013, 374, 102.

2.     Shokrollahi, A.; Abbasi, S.; Mohammadpour Shirazi, S.; Adv. Mater. Lett., 2020, 11, 20081550.

3.     Kisler, J.; Daehler, A.; Stevens, G. W.; O’Connor, A. J.; Micropor. Mesopor. Mater.,2001, 44-45, 769.
4.     Washmon-Kriel, L.; Jimenez, V. L.; Balkus Jr, K. J.; J. Mol. Catal. B-Enzym.,2000, 10, 453.
5.     Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S; Micropor. Mesopor. Mater.,2001, 44, 755.
6.     Diaz, J. F.; Balkus Jr, K. J.; J. Mol. Catal. B-Enzym., 1996, 2, 115.
7.     Tang, W.; Gao, H.; Ni, D.; Wang, Q.; Gu, B.; He, X.; et al., J. Nanobiotechnol.,2019, 17, 68.
8.     Cavani, F.; Trifirò, F.; Vaccari, A.; Catal. Today,1991, 11, 173.
9.     Evans, D. G.; Slade, R. C.; Structural aspects of layered double hydroxides. In: Layered double hydroxides; Springer, 2006.
10.   Khan, A. I.; O’Hare, D.;  J. Mater. Chem.,2002, 12, 3191.
11.   Rives, V.; Layered double hydroxides: present and future; Nova Publishers; 2001.
12.   Manasse, E.;1915, 24, 92.
13.   Zümreoglu-Karan, B.; Ay, A.; Chem. Pap.,2012, 66, 1.
14.   Kuthati, Y.; Kankala, R. K.; Lee, C.H.; Appl. Clay Sci.,2015, 112-113, 100.
15.   Mishra, G.; Dash, B.; Pandey, S.; Appl. Clay Sci., 2018, 153, 172.
16.   Saleh, T. A.; Desalin. Water Treat., 2016, 57, 10730.
17.   Saleh, T. A.; Environ. Technol. Innovation, 2020, 20, 101067.
18.   Saleh, T. A.; Trends in Environ. Anal. Chem., 2020, 28, e00101.
19.   Lee, C. H.; Lin, T. S.; Mou, C. Y.; Nano Today,2009, 4, 165.
20.   Willner, I.; Baron, R.; Willner, B.; Biosens. Bioelectron., 2007, 22, 1841.
21.   El-Boubbou, K.; Schofield, D.A.; Landry, C. C.; J.  Phys. Chem. C,  2012, 116, 17501.
22.   Zhou, Z.; Hartmann, M.; Chem. Soc. Rev., 2013, 42, 3894.
23.   Popat, A.; Hartono, S. B.; Stahr, F.; Liu, J.; Qiao, S. Z.; Lu, G. Q.; Nanoscale, 2011, 3, 2801.
24.   Fried, D. I.; Brieler, F. J.; Fröba, M.; ChemCatChem,2013, 5, 862.
25.   Li, S.; Mulloor, J. J.; Wang, L.; Ji, Y.; Mulloor, C. J.; Micic, M.; et al., ACS Appl. Mater. Inter.,2014, 6, 5704.
26.   Katiyar, A.; Ji, L.; Smirniotis, P. G.; Pint, N. G.; Micropor. Mesopor. Mater., 2005, 80, 311.
27.   Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J.; Nature, 1992, 359, 710.
28.   Ebrahimi, F.; Ph. D. Thesis. Iran , Yasouj: Yasouj University, Faculty of Science, Department of Chemistry; December 2017.
29.   Sharifi, M.; Shokrollahi, A.; Ebrahimi, F.; Int. J. Environ. Anal. Chem., 2021, Inpress, https://doi.org/10.1080/03067319.2021. 1928098.
30.   Saleh, T. A.; J. Water Supply: Res. Technol.-AQUA, 2015, 64, 892.
31.   Hanrahan, G.; Lu, K.; Crit. Rev. Anal. Chem.,2006, 36, 141.
32.   Hamzah, Z.;  Narawi, N.; Rasid, H. M.; Yusoff, A. N. M.; Malaysian JAnalSci.,2012, 16, 290.
33.   Yang, Q.-Z.; Chang, Y.-Y.; Zhao, H.-Z.; Water Res.,2013, 47, 6712.
34.   Shafe, A.; M. Sc. Thesis. Iran, Yasouj: Faculty of Science, Department of Chemistry, Yasouj University; February 2018.
35.   Shen, J. L.; Lee, Y. C.; Lui, Y. L.; Cheng, P. W.; Cheng, C. F.; J. Physics: Condens. Matter,2003, 15, L297.
36.   Alansi, A. M.; Qahtan, T. F.; Saleh, T. A; Adv. Mater. Interfaces. 2021, 8, 2001463.
37.   Mazloum-Ardakani, M.; Sheikh-Mohseni, M. A.; Abdollahi-Alibeik, M.; Benvidi, A.; Analyst, 2012, 137, 1950.
38.   Grigoropoulou, G.; Stathi, P.; Karakassides, M. A.; Louloudi, M.; Deligiannakis, Y.; Colloid. Surface. A, 2008, 320, 25.
39.   Vinu, A.; Gokulakrishnan, N.; Balasubramanian, V. V.; Alam, S.; Kapoor, M. P.; Ariga, K.; et al., Chem. Eur. J., 2008, 14, 11529.
40.   Saleh, T. A; J. Cleaner Prod., 2018, 172, 2123.
41.   Ho, Y. S.; McKay, G.; Process Biochem., 1999, 34, 451.
42.   Bayramoğlu, G.; Yılmaz, M.; Arıca, M. Y.; Biochem. Eng. J., 2003, 13, 35.
43.   Yang, J.; Daehler, A.; Stevens, G. W.; O'Connor, A. J.; Stud. Surf. Sci. Catal.,2003, 146, 775.
44.   Peng, Z.; Hidajat, K.; Uddin, M.; Colloids Surf. B,2004, 35, 169.
45.   Shamim, N.; Liang, H.; Hidajat, K.; Uddin, M.; J. Colloid Interface Sci., 2008, 320, 15.
46.   Smith, S. C.; Ahmed, F.; Gutierrez, K. M.; Rodrigues, D. F.; Chem. Eng. J., 2014, 240, 147.