Document Type : Research Article


1 Department of Physics, VBS Government Degree College Campierganj, Gorakhpur 273158, India

2 Department of Physics & Material Science, MMM University of Technology, Gorakhpur 273010, India

3 Department of Physics, Government Degree College, Dhadha Bujurg, Hata, Kushinagar 274207, India


In the present study, a well-established relation between the band gap of low dimensional solid and its cohesive energy has been used to calculate the band gap variation at nano level. The different thermodynamical models proposed for the cohesive energy do not consider the unsaturated bonds of surface atoms, the shape of the nanoparticle and the packing density of the corresponding crystal simultaneously. Extending the bond energy model, a simple theoretical model for the cohesive energy has been proposed which incorporate all the above-mentioned properties simultaneously and hence getting a more comprehensive relation between the band gap and the characteristics of the nanoparticle. We have computed bandgap of compound semiconducting nanosolids ZnE and CdE, (E=S, Se, Te) in different shapes. It is found that band gap expands as the particle size decreases and the shape deviates more from spherical one. A close agreement between our calculated results and the available experimental data validates the present theoretical model. The present expression of Band gap of Nanosolids is potentially applicable for those materials whose experimental data are not available.


  1. Poole Charles, P.; Owens, Frank Jr.; Introduction to Nanotechnology; 2nd Edition, John Wiley and Sons, UCC Press, Delhi India, 2008.
  2. Kittel, C.; Introduction to Solid State Physics; 7th Edition, John Wiley and Sons, Sonepat Haryana, India, 2008.
  3. Roduner, E.; Chem. Soc. Rev., 2006, 35, 583.
  4. Smith, A. M.; Nie, S.; ACC Chem. Res., 2010, 190, 43.
  5. Canham, L.T.; Appl. Phys. Lett., 199057, 1046.
  6. Yang, C. C.; Li, S.; J. Phys. Chem. C, 2008, 112, 2851.
  7. Yang, C. C; Jiang, Q; Mater. Sci. Eng. B, 2006, 131, 191.
  8. von Grunberg, H. H.; Phys Rev B, 1997, 55, 2293.
  9. Wang, Y.; Ouyang, G; Wang, L.L.; Tang, L.M.; Tang, D.S.; Sun, C.Q.; Chemical Physics Letters,2008, 463, 383.
  10. Brus, L.E.; J. Chem. Phys., 1984, 80, 4403.
  11. Brus, L.; J. Phys. Chem., 1986, 90, 2555.
  12. Bulutay, C.; Phys Rev B., 2007, 76, 205321.
  13. Chen, Y.; Li, J.; Yang, X.; Zhou, Z.; Sun, C.Q.; J. Phys. Chem. C,2011, 115, 23338.
  14. Li, J.; Wang, L.; Physical Review B, 2005, 72, 125325.
  15. Li, M.; Li, J.C.; Materials Letters, 2006, 60, 2526.
  16. Li, M.; Li, J.C.; Jiang, Q.; J. Mod. Phys. B,2010, 24, 2297.
  17. Sapra, S.; Sharma, D.D.; Physical Review B, 2004, 69, 125304.
  18. Sun, C.Q.; Tay, B.K.; Zeng, X.T.; Li, S.; Chen, T.P.; Zhou, J.; Bai, H.L.; Jiang, E.Y.; J. Phys., Condens. Matter, 2002, 14, 7781.
  19. Wang, Y; Ouyang, G.; Wang, L. L.; Tang, L.M.; Tang, D. S.; Sun, C.Q.; Chemical Physics Letters,2008, 463, 383.
  20. Wilson, H. F.; McKenzie-Sell, L; S. Barnarda, A. S.; J. Mater. Chem. C, 2014, 2, 9451.
  21. Yang, C.C.; Li, S.; J. Phys. Chem. C,2008, 112, 2851-2856.
  22. Yang, Chun Cheng; Mai, Yiu-Wing; Materials Science and Engineering R, 2014, 79, 1.
  23. Yofee, A.D.; Advances in Physics, 1993, 42, 173.
  24. Patel, G.R.; Pandya, T.C.; Int. J. Sci. Res. in Physics and Applied Sciences, 2018, 6, 37.
  25. Safaei, A.; Philos. Mag., 2011, 91, 1509.
  26. Qi, W.H.; Accounts of Chemical Research, 2016, 49, 1587.
  27. Wang, Y.; Herron, N.; The Journal of Physical Chemistry, 1991, 95, 525.
  28. Sun, C.Q.; Chen, T.P.; Tay, B.K.; Li, S.; Huang, H.; Zhang, Y.B.; Pan, L.K.; Lau, S.P.; Sun, X.W.; J. Phys. D Appl. Phys., 2001, 34, 3470.
  29. Xiao, H.J.; Li, H.; Chang, L.; Zhang, H.X.; Xu, H.C.; Materials Chemistry and Physics, 2016, 181, 1.
  30. Qu, Y.D.; Liang, X.L.; Kong, X.Q.; Zhang, W.J.; Physics of Metals and Metallography, 2017, 118, 528.
  31. Sachin, Pandey, B.K.; Jaiswal, R.L.; Adv. Sci. Eng. Med., 2020, 12, 27.
  32. Jaiswal, R.L.; Pandey, B.K.; SN Applied Sciences, 2021, 3,466.