Due to the ever growing demand of energy for various applications attention of researchers is aroused by Supercapacitors due to its superior power, energy density and cyclic life. Electrode material mainly determines the performance of Supercapacitors. Conducting polymers, metal oxides and carbon based materials are mainly used as electrode materials in Supercapacitors. Among these three categories of materials, Conducting polymers and metal oxides shows pseudo-capacitance. This paper reported the synthesis of Pure Polypyrrole (PPy) and Polypyrrole/Manganese dioxide (PPy/MnO2) nanocomposites by in-situ chemical oxidative polymerization. The synthesized materials were tested as potential candidates for the electrodes of supercapacitor. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) revealed that nanoparticles of MnO2 are well incorporated into PPy matrix. Cyclic Voltammetry (CV) indicated that PPy/MnO2 nanocomposites have an ideal capacitive behaviour and an excellent cyclibility. Electrochemical impedance spectroscopy (EIS) and Galvanostatic charge-discharge (GCD) measurements proved that nanocomposite electrode with 10% MnO2 composition showed the smallest charge transfer resistance and highest specific capacitance compared to other compositions. The electrochemical studies of PPy/MnO2 nanocomposites showed that PPy/MnO2 nanocomposites are suitable advanced materials for electrodes of the supercapacitors. Copyright © 2018 VBRI Press.

Graphical Abstract

Polypyrrole/MnO2 nanocomposites as potential electrodes for supercapacitor