In the present work, we report the hydrothermal synthesis of NiCo2O4/Single walled carbon nanotubes (SWNTs) nanocomposites for supercapacitor applications. The SWNTs provided the conductive network and favored the growth of NiCo2O4 nanoparticles on its surface to facilitate the collection and transportation of electrons during the electrochemical charge storage performance. Due to the improved conductivity and higher surface area of the NiCo2O4/SWNTs nanocomposites as compared to pure NiCo2O4 nanorods, it exhibited a specific capacitance of 1623 F/g and 1098 F/g at 1mV/s scan rate and 1A/g current density. Obtained energy density and power density of the NiCo2O4/SWNTs nanocomposites were 56.19 Wh/Kg and 9.824 kW/kg respectively. These results demonstrated that the nanocomposites could be a promising candidate for future high performance energy storage devices.