Nitrogen-doped graphene flakes/dots/Fe3N hybrids were synthesized by electrochemical charging/discharging of graphite in ionic liquid/water followed by thermal annealing at the presence of FeCl3. Rich edges of graphene dots and porous graphene flakes from electrochemical etching probably supply heteroatom-doping sites and active catalytic sites while porous graphene flakes support good electrical conductivity and pathway for electrons/ions/gases. The graphene flakes/dots/Fe3N material obtained at 700 °C shows the highest oxygen reduction reaction (ORR) activity with half-wave potential of 753 mV (vs RHE) and better durability and tolerance of methanol than Pt/C.