Authors
Abstract
In the present study, temperature dependence reduction of graphene oxide into graphene nanosheets has been demonstrated using green reducing agent, urea. As synthesized graphene nanosheets have been characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy(UV-Vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photon spectroscopy (XPS). Raman analysis confirms that the maximum reduction of graphene oxide is observed at 140 o C, and reached to high Raman D to G band intensity ratio of ~ 1.41. FTIR analysis supports the Raman signature of maximum reduction of oxygen functional groups from graphene oxide at 140 o C. XPS analysis validates the Raman and FTIR signature of maximum removal of oxygen species from graphene oxide at 140 o C, and confirms the attainment of the C/O ratio of ~ 5.66. Result indicates that the urea offers excellent reductive ability at high temperature to produce graphene nanosheets.
Keywords