In-situ synthesis of ZnO and Nb2O5 composites was carried out in alkaline medium. The obtained composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, diffuse reflectance UV-Vis spectrophotometer (DRS), Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area method, N2-sorption isotherms, Thermo gravimetric analysis (TGA), Particle size  and Field emission scanning electron microscopy (FESEM/EDX). The synthesized composite was used as photocatalyst in the degradation of reactive red-198 (RR), methylene blue (MB) and 3-chloro phenol (3CP) under visible light irradiation. The catalytic activity and removal percentage of dye was determined by the spectrophotometric method, it indicates high percentage of degradation for the ZnO:Nb2O5  composite. The kinetic parameters were found to obey pseudo-first order oxidation reaction, which may be due to the fixed amount of the catalyst and concentration of the dye solution. The recycled and purified composites of  ZnO:Nb2O5 was tested the catalytic activity and  was compared with that of the fresh catalyst.