The (Fe, Ag) co-doped ZnO nanostructures are developed through chemical precipitation method at various percentages of Fe. The X-ray diffraction studies suggest that all the as-synthesized (Fe, Ag) doped ZnO nanopowders have single phase wurtzite structure with no secondary phases. However, the positions of diffracted peaks slightly shifted towards lower (2θ) angles. Photoluminescence studies reveal that 1 mol% of Fe doped ZnO sample has the best ultra violet (UV) emission properties than the other samples. On the other hand, 5 mol% of Fe doped ZnO nanopowders consists of strong green emission band, which belongs to oxygen interstitial defect states. Magnetization analysis shows that 5 mol% of Fe doped ZnO nanopowders have highest room temperature ferromagnetism (RTFM) than the RTFM of other samples. The observed RTFM in co-doped ZnO nanopowders is discussed with the help of structural and emission studies. The results strongly suggest the future development of efficient luminescence and magnetic materials at normal laboratory temperatures with (Fe, Ag) co-doped ZnO nanostructures.