Author

Abstract

In today’s world, bio- nanocomposites are becoming increasingly prevalent owing to the extraordinary properties that they possess. Scientists learn to select suitable matrix (e.g. aliphatic polyesters, polypeptides and proteins, polysaccharides, and polynucleic acids) and fillers (e.g. nanotubes, nanofibers, clay nanoparticles, hydroxyapetite and metal nanoparticles) and alter their chemistry and structure to suit the target field. A critical challenge in the design and development of bio- nanocomposites is the adhesion of filler and matrix at their nanointerface. Also, bio- nanocomposites in addition to providing enhanced properties such as mechanical and thermal are biocompatible and/or biodegradable. This makes them one of the most versatile materials available today and thus can be prominently applied to biomedical technologies such as bone restructuring/repair, tissue engineering, dental applications, and controlled drug delivery.

Keywords