Author

Abstract

A class of proton-conducting non-fluorinated hybrid composite membranes was produced based on poly(vinylpyrrolidone)-doped tetraethoxysilicate (TEOS) and triammoniumphosphate ((NH4)3PO4.3H2O) with and without phosphoricacid. The formation of hybrid composites was verified by various analyses, such as XRD and 1 H NMR, and the thermal degradation was determined by thermogravimetric analysis. The proton conductivity was measured using impedance spectroscopy and values of 3.4 × 10 ‒2 S/cm and 2.3 × 10 ‒2 S/cm were obtained at room temperature for the SiO2/P < sub>2O5/(NH4)3PO4/PVP (90/8/2 mol%/1g) and the SiO2/(NH4)3PO4/PVP (90/10 mol%/1g) hybrid composite membranes, respectively. The results were discussed based on the effects of P < sub>2O5 and (NH4)3PO4 on the hybrid composites.

Keywords