Due to the large volume consumption of plastics, the treatment of the resulting solid waste is becoming a major concern. Polyethylene and polypropylene are two of the most abundant polymers in waste. Recycling them as a blend is an attractive way to reduce the impact of plastic wastes. This work is focused on the relationship between material morphology and tensile behavior, both under static and dynamic loading conditions, of PP/LLDPE blends with varying relative content. Blends present a biphasic morphology with distinctive characteristics that depends on blend composition. Their tensile properties are significantly affected by composition and corresponding morphology: mechanical behavior varied from ductile to brittle under both quasi-static and dynamic loading conditions. The blend with the better and most reliable behavior was found to be the one with 75% of LLDPE, and in a next work it will be used to obtain a ternary composite reinforced with recycled rubber particles obtained from scrap tires.

Graphical Abstract

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends