Authors

Abstract

Diamond-like carbon (DLC) coatings, due to excellent tribological and biological properties, were used wildly to improve the wear resistance and corrosion resistance of the metal-based artificial joints. In this work, DLC coatings were deposited by a vacuum arc using the anode-cathode diameter ratio of da/dc=3/1 with the negative bias applied to the P2000 steel substrate. The relation between the substrate bias and properties of DLC coatings was investigated. The study showed that DLC coating had lower ratio of sp < sup > 2 /sp < sup > 3 and lower friction coefficient at higher bias of – 750 V. With increasing bias, the wear particle size of DCL coatings tended to move towards the distribution of smaller particles. Comparing with the uncoated P2000, P2000 coated with DLC deposited at – 750 V had better biocompatibility. It was revealed that DLC coating deposited by a vacuum arc technique in conjunction with high substrate DC biasing can improve the tribological property and biocompatibility of P2000.

Graphical Abstract

The Effect of Bias on Properties of DLC Coatings for Artificial Joints

Keywords