In this paper, we propose interface electronic circuit for thin film piezoelectric sensing structures. An interface electronic prototype based on dynamically programmed Field Programmable Analog Array (FPAA) is configured to implement Root-Mean-Square (RMS) to DC (RMS-to-DC) conversion process, based on direct method. The studied piezoelectric sensors are prepared by conventional microfabrication technology, involving new lead-free piezoelectric polymer-oxide composite, consisting of gallium doped zinc oxide and polyvinylidene fluoride. The devices show sensitivity to low frequency, weak mechanical loads and exhibit excellent stability at multiple vibrational cycles. It was found that a mass load of 80 g causes DC voltage of 111.8 mV with instability of less than 10 mV, which is sufficient for detection purposes.

Graphical Abstract

Design and Implementation of Dynamic FPAA Based Interface Circuit for Thin Film Lead-Free Piezoelectric Sensors