Mabrook S. Amer; Mohamed A. Ghanem; Prabhakarn Arunachalam; Abdullah M. Al-Mayouf; Talal A. Aljohani
Abstract
Water electrolysis is an attractive approach for hydrogen production process and has enormous potential for sustainable clean energy development. This work demonstrates a controllable and reliable method for in-situ decorating of mesoporous titanium dioxide (m-TiO2) support with low loading (0.1- 2.1 ...
Read More
Water electrolysis is an attractive approach for hydrogen production process and has enormous potential for sustainable clean energy development. This work demonstrates a controllable and reliable method for in-situ decorating of mesoporous titanium dioxide (m-TiO2) support with low loading (0.1- 2.1 wt. %) of cobalt oxide for an efficient electrocatalytic oxygen evolution (OE) in alkaline solution. The ordered (m-TiO2) support modified with cobalt oxide and having uniform mesopores (3-5 nm pore diameter) and a crystalline framework is successfully prepared via soft-template strategy using Pluronic ® F127 triblock copolymer as a mesopores template. Compared to the pure TiO2 mesoporous, the entire Co oxide doped (Co(x)/m-TiO2) catalysts exhibit greatly enhanced OE activity in spite of the low loading of Co oxide electrocatalyst. The Co(2.1)/m-TiO2 catalyst with 2.1 wt. % of Co oxide was the OER most active robust electrocatalyst with a mass activity of 31.5 mA cm 2 mg −1 , the specific activity of 12.6 mA cm −2 at h = 350 mV and 200 mV decrease in overpotential (h) compared to bare m-TiO2. The enhanced OE activity of (Co(x)/m-TiO2) catalysts was attributed to the existence of a uniform distribution of Co oxide electrocatalyst supported on a highly porous structure of the TiO2 substrate.

Mahuya Bandyopadhyay; Hermann Gies; Wolfgang Gr
Abstract
The interpenetrating 3-dimensional channel system of silica MCM-48 has been selected for the deposition of ZnO nanoparticles. The post-synthetic organometallic route was employed to load the mesoporous silica with ZnO-precursor molecule. Calcination of the composite transformed the organometallic sorbate ...
Read More
The interpenetrating 3-dimensional channel system of silica MCM-48 has been selected for the deposition of ZnO nanoparticles. The post-synthetic organometallic route was employed to load the mesoporous silica with ZnO-precursor molecule. Calcination of the composite transformed the organometallic sorbate to the corresponding metal oxide. X-ray powder diffraction, N2-Adsorption and TEM measurement have supported the efficient loading and growth of ZnO particles in the channels of mesoporous silica matrix. EXAFS analysis (ZnK-edges) also complemented the metal uptake. Presence of nano-dispersed and nanosized ZnO particles confined by the mesoporous pore system was established by TEM and EXAFS analysis.
Tanmay K. Ghorai; Prasanta Dhak
Abstract
Mesoporous titania adapted chromium-niobate nanocatalysts CrxNbxTi1-2xO2-x/2 (x = 0.01-0.2) were synthesized by a new synthetic approach, using N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (edteH4) precursors and their photocatalytic activities were investigated. TiO2 nanomaterials have ...
Read More
Mesoporous titania adapted chromium-niobate nanocatalysts CrxNbxTi1-2xO2-x/2 (x = 0.01-0.2) were synthesized by a new synthetic approach, using N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (edteH4) precursors and their photocatalytic activities were investigated. TiO2 nanomaterials have continued to be highly active in photocatalytic applications because these are useful to break down the organic molecules in water for endorsing the diffusion of reactants and products. CrxNbxTi1-2xO2-x/2 (x = 0.01)(CNT1) nanoparticles with the smaller particle sizes 12±1 nm and have mesoporous characteristics (SBET = 162 m 2 g −1 ). The energy band gap of CNT1 was found 1.85 eV obtained from optical emission spectrum. The XRD peaks revealed a mixture of anatase and rutile phases in the synthesized powders. EPR spectroscopy showed the characteristic features of Nb 5+ ions, whose existence was confirmed by XPS. The CNT1 powders display good (2.5 times greater) photocatalytic activity for degradation of Rhodamine B (RhB) as opposed to pure anatase TiO2 and other compositions of CrxNbxTi1-2xO2-x/2.