Computational Materials and Modelling
Arghadeep Laskar; Prashant Motwani; Shruti Dhruw
Abstract
This work is a vital step in enhancing the potential use of a newly developed organic basalt fibre reinforced polymer (BFRP) bars for prestressed concrete applications. In the present study, a test setup has been designed using finite element analysis (FEA) and the various steps of prestressing such ...
Read More
This work is a vital step in enhancing the potential use of a newly developed organic basalt fibre reinforced polymer (BFRP) bars for prestressed concrete applications. In the present study, a test setup has been designed using finite element analysis (FEA) and the various steps of prestressing such as initial prestress, effective prestress and the time dependent effects have been appropriately simulated in the finite element (FE) model. The configuration details of the test setup, such as the size and orientation of the sections and the location of the stiffener plates have been thoroughly investigated. A robust design of the setup has been established based on the FEA results. Subsequently, the FE model has been utilized to predict the transfer stage parameters for concrete beams prestressed using BFRP bars.The transfer length has been predicted from the FEA results to be 24db and 26db (where, db is the diameter of bar) when measured using the BFRP bar strains and the concrete strains, respectively. An end slip of 0.3mm has been obtained after the prestressing of concrete beams. The designed test setup will be later fabricated and utilized to perform experiments under laboratory-controlled conditions.

W.H. El-Garaihy
Abstract
Nowadays, Equal Channel Angular Processing (ECAP) is one of the most appealing and potentially efficient Severe Plastic Deformation techniques (SPD) for fabricating Ultrafine Grained (UFG) and Nanostructured materials (NS) with sufficiently improved mechanical properties which has enabled this technique ...
Read More
Nowadays, Equal Channel Angular Processing (ECAP) is one of the most appealing and potentially efficient Severe Plastic Deformation techniques (SPD) for fabricating Ultrafine Grained (UFG) and Nanostructured materials (NS) with sufficiently improved mechanical properties which has enabled this technique to be used in industrial applications. In this study, commercially pure aluminum was processed by ECAP through route A for up to 4 passes. A Finite Element (FE) analysis was carried out and compared to the experimental findings in order to investigate the effects of the geometric and the process’ parameters on the plastic deformation behavior of the work-piece during the ECAP process. The number of passes was selected as an input factor, while hardness values and compressive properties were modeled as the response. The total imposed stresses and strain as a function of the number of passes were examined. The FE analysis were carried out, yielding favorable results, concurring perfectly with the experimental findings and the microstructural evolution.

Satnam Singh; Pardeep Kumar;S.K. Jain
Abstract
Composites are one of the most advanced and adaptable engineering materials. The strength of any composite depends upon volume/weight fraction of reinforcement, L/D ratio of fibers, orientation angles and other factors. The present work focuses on determination of mechanical properties of pure epoxy ...
Read More
Composites are one of the most advanced and adaptable engineering materials. The strength of any composite depends upon volume/weight fraction of reinforcement, L/D ratio of fibers, orientation angles and other factors. The present work focuses on determination of mechanical properties of pure epoxy and random oriented glass fiber (mat) reinforced epoxy at 10% and 20% weight fractions of glass fibers. The test specimens were prepared and tested according to ASTM standards. The experimental results revealed that with increase in weight fraction of reinforcement, the tensile strength and flexural strength increased by 14.5 % and 123.65% for 20 % glass reinforced composites over pure epoxy. The numerical results obtained were in good agreement to the experimental results. However increased reinforcement increases the brittleness of material which may results in low impact strength. This study further can be used to optimize the weight fraction of glass fibers, to achieve a combination of strength without compromising the impact strength of composites.