V. Malapermal; J.N. Mbatha; R.M. Gengan; K. Anand
Abstract
This study was aimed at developing a simple, eco-friendly and cost effective green chemistry method for the synthesis of bimetallic Au-Ag nanoparticles using Ocimum basilicum aqueous leaf and flower extracts, respectively as the natural reducing agents. The successive reduction of chloroauric acid and ...
Read More
This study was aimed at developing a simple, eco-friendly and cost effective green chemistry method for the synthesis of bimetallic Au-Ag nanoparticles using Ocimum basilicum aqueous leaf and flower extracts, respectively as the natural reducing agents. The successive reduction of chloroauric acid and silver nitrate led to the formation of Au-Ag nanoparticles within 10 min at room temperature, suggesting a higher reaction rate than chemical methods involved in the synthesis. Stable, spherical nanoparticles with well-defined dimensions of average size of 3-25 nm was confirmed by UV-Visible spectroscopy, TEM, SEM-EDX, DLS, and zeta potential, whilst, FTIR in combination with GC-MS analyzed the functional groups adhered to the surface of the nanoparticles The colloidal suspension displayed enhanced antihyperglycemic activity at 69.97 ± 3.42% (leaf) against α-amylase (from porcine) and at 85.77 ± 5.82% (flower) against Bacillus stearothermophilus α-glucosidase than that of acarbose and their respective crude extracts. Furthermore, revealed good antibacterial activity against bacterial species Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa.
Vandana Singh; Devendra Singh
Abstract
In the present communication, we report on diastase alpha amylase immobilization at guar gum-silica nanohybrid material (H5). The immobilized amylase (H5-Amyl) showed significantly higher bioactivity (21.62 U mg -1 ) as compared to free amylase (15.59 U mg -1 ) in solution at pH 5 and temperature 40°C. ...
Read More
In the present communication, we report on diastase alpha amylase immobilization at guar gum-silica nanohybrid material (H5). The immobilized amylase (H5-Amyl) showed significantly higher bioactivity (21.62 U mg -1 ) as compared to free amylase (15.59 U mg -1 ) in solution at pH 5 and temperature 40°C. The kinetic parameters of the free (Km = 10.66 mg L -1 ; Vmax = 1.36 µmolemL -1 .min -1 ) and the immobilized enzyme (Km = 6.11 mg mL -1 ; Vmax = 1.45 µmolemL -1 .min -1 ) revealed that the immobilization has increased the overall catalytic property of the enzyme. The immobilized enzyme on recycling could show 87% of initial activity even in the sixth cycle. Since immobilization did not hamper the enzymatic reaction rate, the biocatalyst may be suitably exploited in food and pharmaceutical industries.