Taiki Yamate; Hiroshi Suzuki; Takayuki Fujiwara; Toru Yamaguchi; Motohiro Akazome
Abstract
Adhesion to chemically inert materials (CIM) through non-covalent interactions without surface modifications represents a formidable challenge in adhesion science. We report herein a rigid poly(acrylamide) bearing multiple benzene rings in its side chains that can strongly adhere to the chemically inert ...
Read More
Adhesion to chemically inert materials (CIM) through non-covalent interactions without surface modifications represents a formidable challenge in adhesion science. We report herein a rigid poly(acrylamide) bearing multiple benzene rings in its side chains that can strongly adhere to the chemically inert surface of the polyolefin without the need for surface modifications. This adhesive is rationally designed based on our previous findings. The adhesion to polyolefin is triggered by the formation of multiple CH/p < /span> interactions at the macroscopic interface. The adhesion strength is far greater than that of adhesions using surface modifications or commercially available polyolefin adhesives. In this study, the adhesion mechanism is carefully analyzed by experimental and theoretical studies. We anticipate that this study could address the long-standing issue of achieving strong adhesion to CIMs without requiring surface modifications and pave the way for future research into the development of new adhesives for CIMs.

Karolina Moszak; Anna Szczurek; Bartosz Babiarczuk; Beata Borak; Justyna Krzak
Abstract
Ultraviolet light influences materials structure causing the decomposition and degradation of organic compounds. One of the ideas to reduce the harmful effects of light is to protect materials by sol-gel coatings. ZnO sol-gel thin films on a glass substrate were obtained as optical filters. The filter ...
Read More
Ultraviolet light influences materials structure causing the decomposition and degradation of organic compounds. One of the ideas to reduce the harmful effects of light is to protect materials by sol-gel coatings. ZnO sol-gel thin films on a glass substrate were obtained as optical filters. The filter effect of synthesized coatings stabilized in different temperatures were characterized by UV-Vis transmittance spectroscopy. The morphology and elemental composition of coating surface was determined by SEM and EDX. Scratch resistance and adhesion have been evaluated by scratch test. The coatings present high transparency in the visible region and absorption in the UV region (270-360 nm). The results suggest that the obtained materials have proper parameters for UV optical filters.