K.F. Chan; H.N. Lim; N.M. Huang; Ahmad H.
Abstract
This paper reviews the recent development of ruthenium complex sensitizers, organic sensitizers, and co-sensitizers for dye-sensitized solar cell (DSSC) applications. The development of ruthenium sensitizers has progressed from thiocyanate (NCS) ligands containing bipyridyl, terpyridyl, quarterpyridyl, ...
Read More
This paper reviews the recent development of ruthenium complex sensitizers, organic sensitizers, and co-sensitizers for dye-sensitized solar cell (DSSC) applications. The development of ruthenium sensitizers has progressed from thiocyanate (NCS) ligands containing bipyridyl, terpyridyl, quarterpyridyl, and cyclometalated ruthenium sensitizers to NCS-free analogs. The integration of organic moieties and ruthenium complex ancillary ligands into a single structure entity was also achieved in the DSSC industry. The development of organic sensitizers as an alternative to ruthenium-based sensitizers was also discussed according to their functional segment: donor, acceptor, and π-spacer. The modification of donor groups has been focused on introducing ancillary groups to increase the molar extinction coefficient and electron recombination resistance. Anchoring groups other than cyanoacrylic acids have been developed to improve the anchoring ability of organic sensitizers while maintaining their light-harvesting properties. A study was performed on π-spacers modified with different conjugation lengths and conjugated side chains in order to enhance the charge transfer within organic sensitizers. Co-sensitization systems, including metal-metal, metal-organic, and organic-organic systems with stepwise and “cocktail” co-sensitization methods will be discussed in this review.

Yuvaraj Sivalingam; Arnaldo D Amico;Corrado Di Natale; Gabriele Magna; Giuseppe Pomarico; Eugenio Martinelli; Roberto Paolesse
Abstract
Recent studies suggest that the gas sensitivity of porphyrin-functionalized ZnO nanorods can be activated under visible light illumination. Then the use of properly coloured light tuned to the absorbance spectra of individual porphyrins could enable a control of sensors sensitivity. The effect of light ...
Read More
Recent studies suggest that the gas sensitivity of porphyrin-functionalized ZnO nanorods can be activated under visible light illumination. Then the use of properly coloured light tuned to the absorbance spectra of individual porphyrins could enable a control of sensors sensitivity. The effect of light on the sensitivity to gases is critically governed by the transport phenomena of electronic charge across the interfaces of organic and inorganic structures. Therefore, accurate measurements of energy levels and contact potential differences in porphyrins functionalized ZnO nanorods are important to intepret the sensing properties of such hybrid materials. For the scope, Kelvin probe measurements of porphyrin-ZnO structures were performed exposing the material in dark and visible light and to organic vapours. Results provide an experimental basis to understand the mutual effects of gas adsorption and illumination to the device conductivity.