Yossef Danan; Ariel Schwarz; Moshe Sinvani; Zeev Zalevsky
Abstract
In the last decade diversity of applications in the fields of diagnostics and treatment for biomedical applications using gold nanoparticles (GNPs) as contrast agent sprang up. The strong optical absorption and scattering properties of the GNPs due to their localized surface plasmon resonance (LSPR) ...
Read More
In the last decade diversity of applications in the fields of diagnostics and treatment for biomedical applications using gold nanoparticles (GNPs) as contrast agent sprang up. The strong optical absorption and scattering properties of the GNPs due to their localized surface plasmon resonance (LSPR) effect enables their use as contrast agents in these applications. The usage of the light-scattering properties of the GNPs in most imaging methods lead to background noise stems from light scattering from the tissue due to the same wavelengths of the illumination source and the GNPs’ scattering. In our previous works we presented a method to improve border detection of bio-phantoms enriched with GNPs leading for real-time complete tumor resection by using a modulated laser illumination, photo thermal imaging camera and the optical absorption of specially targeted GNPs. In this system the thermal camera detects the temperature field of the illuminated bio-phantoms. Although the surrounding area got heated the border location was detected at a precision of at least 0.5 mm through use of a simple post processing technique. In this paper, we present a continuation of our previous research with modified system of time sequence labelling (TSL) processing for improved border detection capable of operating and detecting borders at much lower signal to noise levels.

Rajkumar Patra; Anjali Singh; V. D. Vankar; S. Ghosh
Abstract
We report a simple and detailed simulation based analysis of an experimental field emission (FE) image captured on a phosphor coated indium tin oxide (ITO)/glass plate due to the electron emission from a multiwalled carbon nanotube (MWCNT) film. Emission intensity versus effective emissive area, number ...
Read More
We report a simple and detailed simulation based analysis of an experimental field emission (FE) image captured on a phosphor coated indium tin oxide (ITO)/glass plate due to the electron emission from a multiwalled carbon nanotube (MWCNT) film. Emission intensity versus effective emissive area, number of CNTs present in the film contributing emission process and number density of MWCNTs at high field (during FE process) along with other FE parameters viz. turn on field, threshold field are determined, which agrees well with experimental results. Over estimation of calculated value over experimental results is realized with creation of new emission sites at high electric field due to combined effect of divergence of electron within electrode because of electron-air molecule collision, assumption of evenly placement of emitters during calculation, damages and/or tear-off of emitters at high electric field, contribution of adsorbates of MWCNT walls and the energy loss due to absorption of phosphor atom. This analysis renders a unique way to analyze field emission data and supports the theoretical formulation to evaluate the best possible values of FE parameters.