Hanfeng Liang; Xun Xu; Jinqing Hong; Zhoucheng Wang
Abstract
MnFe2O4 nanoplates have been synthesized by a simple hydrothermal method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) have been employed to characterize the structure and morphology of the ...
Read More
MnFe2O4 nanoplates have been synthesized by a simple hydrothermal method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) have been employed to characterize the structure and morphology of the as-prepared sample. The results show that the products are plate-like morphology with 100-500 nm in length and 100-200 nm in thickness. Contrast experiments indicate that the formation of the plate-like nanostructure could be ascribed to the effect of citrate complexation. Magnetic measurements at 300 K gave the saturation magnetization and the coercive field of nanoplates 39.2 emu g -1 and 91.5 Oe, respectively. The electrochemical performance as anode material for lithium-ion batteries was further evaluated by cyclic voltammetry (CV), electrochemical impedance and charge-discharge measurements. It was demonstrated that the material could provide an initial reversible capacity of 1067 mAh g -1 at a current density of 0.1 mA cm -2 over the voltage range from 0.5 to 3.0 V.