Mohammed Elbadawi; James Meredith; Mosalagae Mosalagae; Ian M. Reaney
Abstract
In this study, we have developed hydroxyapatite (HA) scaffolds for synthetic bone graft from nano-sized HA particles using ceramic extrusion. We also demonstrate that these HA scaffolds show enhanced compressive strength (29.4 MPa), whilst possessing large pore sizes (> 600 µm) that are suitable ...
Read More
In this study, we have developed hydroxyapatite (HA) scaffolds for synthetic bone graft from nano-sized HA particles using ceramic extrusion. We also demonstrate that these HA scaffolds show enhanced compressive strength (29.4 MPa), whilst possessing large pore sizes (> 600 µm) that are suitable for bone grafting. The extrusion process involved forming a ceramic paste by mixing the HA powder with a binder and distilled water. The ceramic paste was then fabricated using a ram extruder that was fitted with a honeycomb die to impart large, structured pores. Several green bodies were extruded and then subjected to the same drying and thermal debinding treatment. The samples underwent three different sintering temperatures and two varied dwell times, in order to determine the optimum sintering parameters. The scaffolds were then analysed for their chemical, physical, mechanical and biological properties to elucidate the effects of the sintering parameters on extruded HA scaffolds. The results revealed that the nano-sized particles exhibited a high sinterability, and XRD analysis showed phase purity until 1300 o C. At 1300 o C, trace amounts of phase impurities were detected, however, scaffolds sintered at this temperature exhibited the highest mean compressive strength. The findings demonstrated that traces of phase impurities were not detrimental to the scaffold’s compressive strength. In addition, scanning electron microscopy and density measurements revealed a highly densified solid phase was attained.
Farnaz Ghorbani; Hanieh Nojehdehyan; Ali Zamanian; Mazaher Gholipourmalekabadi; Masoud Mozafari
Abstract
There have been several attempts to synthesis biodegradable polymeric constructs with adequate porous structures for soft connective tissues. In this study, randomly-oriented PLGA-gelatin nanofibrous scaffolds were synthesized by electrospinning method. We offered an appropriate solvent (2, 2, 2-trifluoroethanol) ...
Read More
There have been several attempts to synthesis biodegradable polymeric constructs with adequate porous structures for soft connective tissues. In this study, randomly-oriented PLGA-gelatin nanofibrous scaffolds were synthesized by electrospinning method. We offered an appropriate solvent (2, 2, 2-trifluoroethanol) to dissolve both polymers for achieving a homogenous solution without inducing any toxic effects. The results confirmed the formation of high porous and bead free scaffolds, in which an increase in the injection rate slightly decreased the mechanical, swelling ratio and biodegradation behaviors. The modulus and tensile strength for the scaffolds with the injection rate of 0.2 ml/hr were 0.72 ±0.02 and 2.70 ±0.33, respectively. In addition, the evaluation of cell proliferation demonstrated that L929 fibroblast cells spread well on the scaffolds, indicating that they are able to support cell attachment. A possible chemical bond formation has been also suggested for the blending mixture of PLGA and gelatin molecules.