Abdul Rauf Khaskheli; Saba Naz; Razium Ali Soomro; Faruk Ozul; Abdalaziz Aljabour; Nazar Hussain Kalwar; Abdul Waheed Mahesar; Imren Hatay Patir; Mustafa Ersoz
Abstract
This report demonstrates a facile and green fabrication method for the nickel nanoparticles using L-lysine as an efficient protecting agent. The application of green amino acid (L-lysine) enabled formation highly spherical and well-dispersed nanoparticles with average diameter in the range of 10 ±2.5 ...
Read More
This report demonstrates a facile and green fabrication method for the nickel nanoparticles using L-lysine as an efficient protecting agent. The application of green amino acid (L-lysine) enabled formation highly spherical and well-dispersed nanoparticles with average diameter in the range of 10 ±2.5 nm. UV-Vis spectroscopy was used as a primary tool to elaborately study and optimize the necessary experimental condition for the developed synthetic protocol. Fourier transform infrared spectroscopy (FTIR) was used to confirm the surface protection of Ni NPs via L-lysine molecules whereas; atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided morphological and topographical view of the as-synthesized Ni NPs. In addition, small angle X-ray scattering (SAXS) and X-ray diffraction (XRD) were used to evaluate compositional characteristics of fabricated L-lysine protected Ni NPs. The as-synthesized Ni NPs demonstrated excellent catalytic potential when utilized as heterogeneous catalyst for reduction of methylene Blue (MB) in the presence of sodium borohydride (NaBH4). The observed catalytic reaction was determined to follow pseudo first order kinetics with rate constant (K) and turn over frequency (TOF) determined to be 0.0224 and TOF value of 0.00411 s -1 respectively.
Jagriti Narang; Utkarsh Jain; Nitesh Malhotra; Sandeep Singh; Nidhi Chauhan
Abstract
An amperometric lysine biosensor was fabricated by immobilizing lysine oxidase onto core shell magnetic nanoparticles (Core–shell MNPs)/multiwalled carbon nanotube (MWCNT) layer deposited on Au electrode via carbodiimide linkage. Transmission electron microscopy (TEM) for core–shell MNPs, ...
Read More
An amperometric lysine biosensor was fabricated by immobilizing lysine oxidase onto core shell magnetic nanoparticles (Core–shell MNPs)/multiwalled carbon nanotube (MWCNT) layer deposited on Au electrode via carbodiimide linkage. Transmission electron microscopy (TEM) for core–shell MNPs, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and Fourier transform impedance spectroscopy (FTIR) studies were used to characterize the modified electrode. Sensor showed optimal response within 2s at 30ºC in 0.05 M sodium phosphate buffer pH 6.0 when polarized at +0.2 V vs. Ag/AgCl. Linear working range of the biosensor was determined by 0.05 -700 μM with a detection limit of 0.05 μM. A good correlation (r = 0.98) was obtained between serum lysine levels measured by the standard HPLC method (y) and the present method (x). A number of serum substances had practically no interference. The sensor was used in 150 assays and had a storage life of 180 days at 4 o C. This nanohybrid biosensor will be useful for detection of lysine in food and pharmaceutical industries.