R. Torres-Mendieta; R. Mondrag
Abstract
Laser ablation in liquids by femtosecond radiation has been used to generate gold nanoparticles in a heat transfer fluid to produce a high stable thermal nanofluid as a heat transfer intensification technique. In oil based fluids, no matter the actual fabrication route, nanoparticles tend to agglomerate. ...
Read More
Laser ablation in liquids by femtosecond radiation has been used to generate gold nanoparticles in a heat transfer fluid to produce a high stable thermal nanofluid as a heat transfer intensification technique. In oil based fluids, no matter the actual fabrication route, nanoparticles tend to agglomerate. Here, we report a new form to control its stability through the addition of a surfactant that does not degrade at high temperatures. It allow us to produce gold nanoparticles of 58±31 nm in the liquid in situ, avoiding in this way the generation of pollution and reducing the maximum point of nanoparticle agglomeration at 370 nm. The developing of this new nanofluid represents a great opportunity for the harvesting of solar energy industry.