Functional Materials
Pankaj Solanki; Mayur Vala; Sandip V. Bhatt; Dhananjay Dhruv; Bharat Kataria
Abstract
We report the results of studies on the rectifying behaviour and tunnelling conduction in GdMnO3/ZnO/STO and GdMnO3/Al:ZnO/STO thin film heterostructures comprising of p-n junctions fabricated using the Pulsed Laser Deposition (PLD) technique. A structural study using grazing angle mode XRD depicts polycrystalline ...
Read More
We report the results of studies on the rectifying behaviour and tunnelling conduction in GdMnO3/ZnO/STO and GdMnO3/Al:ZnO/STO thin film heterostructures comprising of p-n junctions fabricated using the Pulsed Laser Deposition (PLD) technique. A structural study using grazing angle mode XRD depicts polycrystalline growth and confirms the phase purity. The AFM micrographs reveals the different grain growth and grain sizes of the prepared thin film heterostructures. Room temperature Raman spectra shows the presence of various vibrational modes in both the thin film heterostructures, the transport studies using I–V measurements at room temperature is explained using various models. The temperature dependent transport studies using I-V measurements at various temperatures reveal the rectifying behaviour and the difference in the I-V behaviour at various temperature can be understood on the basis of interface effect at the junction, which has been attributed to the presence of the various conduction phenomena through the junctions and the change in barrier height with the temperature for both presently studied thin film heterostructures.

Wenkai Zhu; Faguang Yan; Quanshan Lv; Ce Hu; Kaiyou Wang
Abstract
Photodetectors based on two-dimensional (2D) materials and their heterostructures have been attracting immense research interests due to their excellent device performances, such as ultrahigh photoresponsivity, ultrafast and broadband photodetection, polarized sensitivity, flexibility, and Complementary ...
Read More
Photodetectors based on two-dimensional (2D) materials and their heterostructures have been attracting immense research interests due to their excellent device performances, such as ultrahigh photoresponsivity, ultrafast and broadband photodetection, polarized sensitivity, flexibility, and Complementary Metal-Oxide-Semiconductor (CMOS) compatibility. Here, we firstly compare the device performance of several photodetectors based on Schottky junctions and p-n junctions, such as photoresponsivity and response time. Then, we provide an overview of the recent progress on 2D material-based photodetectors, emerging strategies to improve device performances by structure optimization and bandgap engineering as well. Finally, we discuss the challenges and perspectives on the exploration of 2D materials and their heterostructures for future application in electronics and optoelectronics.