See Leng Tay; Chris Goode; Wei Gao
Abstract
The use of ceramic nano-powders to create composite coatings is well known but is neither simple to industrialize nor environmentally friendly. Patented Cirrus Dopant™ technology from Cirrus Materials Science offers the performance advantages of nano-composite coatings without the implementation ...
Read More
The use of ceramic nano-powders to create composite coatings is well known but is neither simple to industrialize nor environmentally friendly. Patented Cirrus Dopant™ technology from Cirrus Materials Science offers the performance advantages of nano-composite coatings without the implementation and process drawbacks. Cirrus Dopant™ technology is applicable to commercial baths for a large variety of electrolytic and electroless deposited coatings including Ni, Ni-P, Ni-B, Co-P, Au, Ag, Sn, and Zn-Ni. Successful application of the technology simply requires optimization of a specialized Dopant™ to the bath. This paper discusses the process and results for nano-doping commercially important coating baths.

Visittapong Yordsri; Winadda Wongwiriyapan; Chanchana Thanachayanont
Abstract
A facile growth of carbon nanotubes (CNTs) was facilitated by the use of direct-current plating technique for catalyst preparation. Ni nanoparticles (NPs) were deposited on Cu foil at different applied voltages of 1.0, 1.5 and 2.0 V. The Ni-deposited foil was subsequently used as catalyst for CNTs synthesis ...
Read More
A facile growth of carbon nanotubes (CNTs) was facilitated by the use of direct-current plating technique for catalyst preparation. Ni nanoparticles (NPs) were deposited on Cu foil at different applied voltages of 1.0, 1.5 and 2.0 V. The Ni-deposited foil was subsequently used as catalyst for CNTs synthesis by chemical vapour deposition (CVD) method. CVD was carried out at 800 ºC using ethanol as carbon source. A voltage of 1.5 V was the optimum condition to deposit uniform Ni NPs that had a narrow size distribution of 55±3 nm, which in turn, yielded synthesized CNTs with a uniform diameter of approximately 60±5 nm with graphitic layers parallel to the CNTs axis. On the other hand, electroplated Ni at 1.0 V produced CNTs with graphitic layers at an angle to the CNTs axis, while electroplated Ni at 2.0 V produced curly CNTs with a wide distribution of diameters. These results show that Ni NPs size distribution could be controlled by electroplated voltage. Our observation was that Ni NPs with a narrow distribution of sizes and a uniform diameter is a key to uniform CNT synthesis. Furthermore, the synthesized CNTs electrode shows a faradic pseudo capacitance property, which can be attributed to the existence of oxidized Ni NPs. These results propose that the synthesized CNTs are promising materials for future super capacitor application. The optimization of ratio of Ni NPs and CNTs may improve the supercapacitors performance.