Manuel Fernandes; Kshitij RB Singh; Tanushri Sarkar; Pooja Singh; Ravindra Pratap Singh
Abstract
Magnesium oxide nanoparticles have emerged as a potential candidate for meeting ends of various problems due to its unique properties such as biodegradability, non-toxicity, inhibition of biofilm growth and degradation of harmful dyes such as methyl violet and many more. Along with its easy synthesis ...
Read More
Magnesium oxide nanoparticles have emerged as a potential candidate for meeting ends of various problems due to its unique properties such as biodegradability, non-toxicity, inhibition of biofilm growth and degradation of harmful dyes such as methyl violet and many more. Along with its easy synthesis by methods such as sol-gel technique, precipitation method, and green synthesis, it is widely applicable for toxic waste remediation, antibacterial materials, removal of industrial pollutants and also used in anti-arthritic and anti-cancer activities. Prior reviews have laid focus on singular domains whereas our review clubs three major domains i.e., clinical, agricultural and environmental that are involved in the day to day life of plants as well as animals. Besides the above information, properties, synthesis, nanotoxicity and future perspectives of magnesium oxide nanoparticles have also been elaborated in this review.

Ashutosh Tiwari
Abstract
I am delighted to share the journey of Advanced Materials Letters (AML), which started its journey in June 2010 holding the hands of International Association of Advanced Materials (IAAM, www.iaamonline.org) with the motto of “Advancements of materials to global excellence”. The time was ...
Read More
I am delighted to share the journey of Advanced Materials Letters (AML), which started its journey in June 2010 holding the hands of International Association of Advanced Materials (IAAM, www.iaamonline.org) with the motto of “Advancements of materials to global excellence”. The time was the starting of 2010 and we were discussing about our upcoming footsteps for the advancement of materials research for empowering the society. Certainly, during the meeting, the core team of IAAM decided to publish an open access journal in the field advanced materials so that the materials’ community should get the latest highlights in advanced materials without any subscription and without any processing fee. We are very much thankful to VBRI Press for providing their platform for this noble initiative. The journey of the remarkable growth and impact of AML begins with its subject area of materials science and technology, also reflected by its unique and popular website http://www.vbripress.com/aml/. After a worthy journey of over 8 years, AML is now going to celebrate its 9 th anniversary in 2019, so as the founder Editor of AML, I am feeling very gratified to highlight the progress, milestones and future opportunities.
Jiehua Ma; Xiaolu Hu; Yaqin Tao; Chao Li; Xiaoxia Mao; Genxi Li
Abstract
The detection of tumor markers plays an important role in clinical diagnosis and evaluation of therapeutic effect. Early detection of tumor markers, which are usually proteins, can greatly facilitate effective treatment with different modalities and even increase cure rate of patients. Currently, nanoparticle-based ...
Read More
The detection of tumor markers plays an important role in clinical diagnosis and evaluation of therapeutic effect. Early detection of tumor markers, which are usually proteins, can greatly facilitate effective treatment with different modalities and even increase cure rate of patients. Currently, nanoparticle-based methods for cancer diagnostics are becoming an increasingly relevant alternative to traditional techniques. Gold nanoparticles (AuNPs) are one of the most extensively studied nanomaterials due to their remarkable physical and chemical properties. With the recent advances in nanotechnology, AuNPs have offered new ways to detect tumor markers at low concentrations and to target cancer cells in very deep sites. The use of AuNPs may increase the sensitivity of a biosensor and generate higher accuracy and precision of the assays. So, AuNPs have greatly facilitated the development of nanomaterials-based technology for clinic diagnostics and therapy. In this review paper, we have summarized different kinds of AuNPs-based biosensors for the detection of tumor marker proteins with a particular focus on optical and electrochemical techniques, which may provide valuable perspective for the colleagues in the related communities.
Ashutosh Tiwari
Abstract
VBRI Press is pleased to announce ‘Biosensors and Bioelectronics Symposium' during 23 – 25 August 2016, Sweden. It is a three-day international event organised by International Association of Advanced Materials, Biosensors and Bioelectronics Centre - Linköping University on ...
Read More
VBRI Press is pleased to announce ‘Biosensors and Bioelectronics Symposium' during 23 – 25 August 2016, Sweden. It is a three-day international event organised by International Association of Advanced Materials, Biosensors and Bioelectronics Centre - Linköping University on the Baltic Sea from Stockholm-Helsinki-Stockholm by the Viking Line Cruise M/S Mariella. The aim of symposium is to provide advances in biosensors and bioelectronics and related sectors such as telecommunications, mobile & digital health expert systems and distributed diagnostics and also provide the premier interdisciplinary symposium for researchers, engineers and educators to present and discuss the most recent trends and practical challenges encountered adopted in the field of Biosensors and Bioelectronics.
Ashutosh Tiwari
Abstract
It is our great pleasure to publish the 6th volume, 6th issue, June 2015 of Advanced Materials Letters in celebration of Prof. Anthony P. F. Turner’s 65th Birthday. Professor Turner was born in London in the United Kingdom on June 5, 1950. He graduated in Applied Biology from the University of ...
Read More
It is our great pleasure to publish the 6th volume, 6th issue, June 2015 of Advanced Materials Letters in celebration of Prof. Anthony P. F. Turner’s 65th Birthday. Professor Turner was born in London in the United Kingdom on June 5, 1950. He graduated in Applied Biology from the University of East London and gained a Masters in Biochemistry from the University of Kent. In 1980, he received his PhD in Microbiology at the University of Portsmouth. He joined Cranfield University in 1981 to help start the UK’s first Biotechnology Centre and founded the Biosensors group there, where he led the group that developed the world’s most successful type of biosensor, i.e., the hand-held mediated amperometric glucose sensor for people with diabetes.