Jia-Jia Shen; Jia He; Ya Ding
Abstract
Gold nanoparticles (GNPs) are of unique and interesting materials being firstly reported 100 years ago. They are one of the most widely studied nanomaterials potential for disease cure. To improve the colloidal stability, biocompatibility, and hemocompatibility of GNPs, chitosan (CS), a naturally produced ...
Read More
Gold nanoparticles (GNPs) are of unique and interesting materials being firstly reported 100 years ago. They are one of the most widely studied nanomaterials potential for disease cure. To improve the colloidal stability, biocompatibility, and hemocompatibility of GNPs, chitosan (CS), a naturally produced polysaccharide with excellent biocompatibility and biodegradation, has been modified to generate water-soluble derivatives and used as the stabilizing agent of GNPs. In the presence of these derivatives, GNPs are stabilized, functionalized, and assembled via electronic static and covalent bond interactions. Based on these works, GNPs with different dimensional, morphology, and crystal lattice are obtained, which can be further apply to a variety of applications in sensing, imaging, therapy, and catalysis.

Ayushi Tiwari; Anshuman Mishra
Abstract
Diabetes mellitus is a serious life-time health issue which has been increasing among the greater population, approximately 285 million people carrying this disease worldwide. In this study, we have functionalised the gold nanoparticles (AuNPs) with biocatalytic enabled optical property, it is the subject ...
Read More
Diabetes mellitus is a serious life-time health issue which has been increasing among the greater population, approximately 285 million people carrying this disease worldwide. In this study, we have functionalised the gold nanoparticles (AuNPs) with biocatalytic enabled optical property, it is the subject of the study for detecting glucose towards the development of photometric nano-transducer. The citrate capped AuNPs were used to warrant the electrostatic self-assembly of glucose oxidase (GOx) in the colloidal state. Glucose biocatalysis was studied through the nano-optical function of glucose on the surface of AuNPs. Using surface plasmonic resonance as analytical technique, we have determined the molecular binding interaction between glucose molecule and AuNPs surface. Based on the visible spectrum, successful immobilization of GOx onto AuNPs was demonstrated. The GOx functionalized AuNP exhibits catalytic activities for the oxidation of glucose and resulting change in the absorption peak of colloidal bio-assembly. It was observed that the absorbance at 520 nm was proportional to the concentration of glucose in the test samples. The Lambert-Beer law expresses the linear relationship between the absorbance and glucose concentration at a fixed wavelength, i.e., λmax at 520 nm. The precise detection of glucose is essential to monitor the biological level of glucose in the body. It can be concluded that the nano-(bio) gold surface exhibits a rapid photometric response with changes of glucose concentration in the test samples.
Anna Varizhuk; Vyacheslav Severov; Galina Pozmogova
Abstract
It is now commonly acknowledged that G-rich polynucleotide sites can fold into G-quadruplex (G4) structures in vivo. In terms of molecular programming, the G4-folding propensity can be regarded as a build-in nucleic acid function with multiple implications for genomic regulation. Here we review several ...
Read More
It is now commonly acknowledged that G-rich polynucleotide sites can fold into G-quadruplex (G4) structures in vivo. In terms of molecular programming, the G4-folding propensity can be regarded as a build-in nucleic acid function with multiple implications for genomic regulation. Here we review several important advances in the studies of G4 self-assemblies in genomic context. We discuss prerequisites and consequences of G4 formation upon transcription or replication and analyze recent data on G4-dependent genomic rearrangements, including translocation and recombination. Hypothetical mechanisms of those G4-dependent rearrangements suggest self-association of G-rich sites. We outline the general molecular basis for possible self-association pathways, i.e., formation of intermolecular G4 assemblies or interquadruplex stacking. Intermolecular G4s and multimeric G4 stacks attract widespread interest as scaffolds for the development of complex junctions in DNA nanotechnology and have prospects in aptamer design, but in this review we focus on fundamental aspects of such higher-order G4 assemblies.

Ashish Gupta; Deoram V. Nandanwar; Sanjay R. Dhakate
Abstract
Zinc oxide (ZnO) nanoparticles, self-assembled in the form of one dimensional ZnO nanofibers were synthesized using electrospinning technique from solution of polyvinyl alcohol (PVA) and zinc acetate followed by calcination at 600°C in oxidizing environment. Scanning Electron Microscope (SEM) analysis ...
Read More
Zinc oxide (ZnO) nanoparticles, self-assembled in the form of one dimensional ZnO nanofibers were synthesized using electrospinning technique from solution of polyvinyl alcohol (PVA) and zinc acetate followed by calcination at 600°C in oxidizing environment. Scanning Electron Microscope (SEM) analysis demonstrates that morphology of ZnO nanofibers having rough surface and corresponding Energy Dispersive Spectrometry (EDAX) confirmed the Zn: O atomic ratio approximately in 50:50. Transmission electron microscopy (TEM) images clearly demonstrate the rough morphology is due to the self-assembling of ZnO nanoparticles having diameter approximately 50nm. X-ray Diffraction (XRD) reveals the polycrystalline structure and Raman spectra show some shifts in phonon modes. The PL graph show exceptional emission at 342nm due to band-band transition. Under solar radiations as produced ZnO nanofibers degrades the 99% of 25ppm acid fuchsine which proven through UV spectra when compared to blank dye solution. This shows that natural solar radiations are sufficient to excite theses self-assembled high surface area ZnO nanofibers to show its photocatalytic activity.
Rajesh V. Nair; ;B N Jagatap; Anjani K. Tiwari; Sushil Mujumdar; and B N Jagatap
Abstract
We discuss experimental results demonstrating the inhibition and enhancement of spontaneous emission of dye molecules embedded in a nanophotonic structure. This is achieved in our all-solid self-assembled photonic crystals consisting of dye-doped polystyrene spheres. Our samples exhibit well-resolved ...
Read More
We discuss experimental results demonstrating the inhibition and enhancement of spontaneous emission of dye molecules embedded in a nanophotonic structure. This is achieved in our all-solid self-assembled photonic crystals consisting of dye-doped polystyrene spheres. Our samples exhibit well-resolved photonic stop gap with high reflectivity and photonic strength. Laser induced emission experiments reveal an inhibition of ~ 70% of emission intensity in the photonic stop gap wavelength range. Also, we discuss the enhancement of spontaneous emission intensity near the blue side of the stop gap. Our results have implications in photonic devices, such as, low-threshold lasers and efficient lighting devices.
S.R. Kargirwar; S.R. Thakare; M.D. Choudhary; S.B. Kondawar; S.R. Dhakate
Abstract
Copolymerization of self doping monomer aniline and oxalic acid (OA)/ acetic acid (AA) in different molar ratio via the self-assembly process were conducted to prepare self-doping polyanilines (SD-PANIs). In this polymerization process, AA or OA plays the roles of surfactant and dopant for the self-doping ...
Read More
Copolymerization of self doping monomer aniline and oxalic acid (OA)/ acetic acid (AA) in different molar ratio via the self-assembly process were conducted to prepare self-doping polyanilines (SD-PANIs). In this polymerization process, AA or OA plays the roles of surfactant and dopant for the self-doping PANIs. The morphology, UV–Vis absorption behaviour, crystalline density and electrical conductivity of self-doped PANIs are investigated. Depending on molar ratio of aniline to OA/AA, nanotubes structure of polyaniline (PANI) can be formed. Higher concentration of OA leads to increase in the diameter of the tubes in which micelles act as the template in the self-assembly of PANI to form nanotube structures, whereas increase in concentration of AA leads to change the structure of polyaniline from microspheres to nanotubes. The nanotubular structure aggregates to form a bundle structure as the concentration of AA increases. More uniform structure is observed in case of OA than that of AA, which may be due to the bulky structure of OA than AA. Higher absorption intensity in UV-Vis spectra of self-doping PANIs was observed for lower concentration of OA/AA. The crystal structure for the synthesized self-doped PANIs is orthorhombic and the C-N-C angle is larger. High electrical conductivity of the self-doped PANIs was observed as a function of degree of doping.