Muazzam Sheriff Maqbul; Aejaz A. Khan; Tasneem Mohammed; S.M. Shakeel Iqubal; Abdul Rahman Ikbal; Ibrahim Ahmed Shaikh; Uday Muddapur; Mohammed Shahid Hussain; S. K. Singh
Abstract
The present study showcases the efficacy of Cinnamomum tamala (C. tamala) as a potential antimicrobial substance against the multi-drug resistant Enterococcus faecalis (E. faecalis) bacterium. The one of the most vulnerable bacteria to this spice was E. faecalis but due to lack of authentic evidences ...
Read More
The present study showcases the efficacy of Cinnamomum tamala (C. tamala) as a potential antimicrobial substance against the multi-drug resistant Enterococcus faecalis (E. faecalis) bacterium. The one of the most vulnerable bacteria to this spice was E. faecalis but due to lack of authentic evidences the treatment with this spice was diminished and used as a culinary spice till date to provide flavor without knowing its medicinal values which has given rise to the discovery of synthetic chemical antibiotics to treat these infections. This is an attempt to resurrect the ancient phyto-pharmaceutic techniques for combating the pathogenic bacteria as our time with the synthetic chemical antibiotic drug is draining out which gives rise to the multi-drug bacteria which becomes difficult to be treated. These types of natural resources is an alternate for the toxic synthetic chemicals with zero side effects. Enterococcus faecalis clinical isolate from the different samples showed the best susceptibility with the essential oil extract determined by the Kirby Bauer Disc Diffussion technique with satisfactory MIC and MBC results. The results obtained for the antibacterial properties of Cinnamomum tamala dried leaves essential oil extract recorded were excemplary from the performed standard antibiotic assay which determines that the efficacy of the natural essential oil proved to be an excellent alternative to treat infectious bacterial diseases.

Bhavna H. Meshram; Subhash B. Kondawar
Abstract
Fabrication of nanocomposite film of electrically conducting polypyrrole (PPy) and functionalized multi-walled carbon nanotubes (MWCNTs) on a stainless steel electrode by electro-deposition method and immobilization of urease onto the nanocomposite film to obtain a nanobiocomposite electrode as a sensitive ...
Read More
Fabrication of nanocomposite film of electrically conducting polypyrrole (PPy) and functionalized multi-walled carbon nanotubes (MWCNTs) on a stainless steel electrode by electro-deposition method and immobilization of urease onto the nanocomposite film to obtain a nanobiocomposite electrode as a sensitive electrochemical urease biosensor is reported. Cross-linking by glutaraldehyde (0.1%) method for the immobilization of urease (2 mg/mL) in a phosphate buffer solution of 0.1 molarity at a pH of 7.0 was used. The Characterization of the nanocomposite and nanobiocomposite film thus obtained was done by Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS). The increased size of the Cyclic voltammogram and shifting of anionic peaks towards the lower voltage indicates the incorporation of MWCNTs into the growing film during the electro-deposition of PPy on electrode. Reduction of the oxidation potential due to MWCNTs leads to lowering of potential for the electro-catalytic reduction of urea. The incorporation of functionalized MWCNT also made possible increased amount of enzyme concentration, an extended lifetime, long time stability and improved response times of the enzyme electrode. This modified nanobiocomposite electrode showed a good linear response to the urea concentration change in the range of 10 mM to 50 mM. The results obtained from Michaelis–Menten constant K´m, maximum current (Imax), detection limit, sensitivity, response time and shelf-life of electrochemical biosensor indicating good sensing for urea detection.

T. Muthu; K. Anand; M. Sureshkumar; R. M. Gengan
Abstract
An efficient one-pot multi-component synthesis of medicinally important 2-amino-4H-pyran-3-carbonitrile derivatives using a new heterogeneous calcium loaded boron nitride (CaBNT) catalyst is described herein. This transformation transpires by Knoevenagel condensation, Michael addition and intramolecular ...
Read More
An efficient one-pot multi-component synthesis of medicinally important 2-amino-4H-pyran-3-carbonitrile derivatives using a new heterogeneous calcium loaded boron nitride (CaBNT) catalyst is described herein. This transformation transpires by Knoevenagel condensation, Michael addition and intramolecular cyclization. Alkaline earth metal-based green catalyst was successfully prepared and characterized by XRD, SEM with EDX, Raman spectroscopy, BET, DSC-TGA and FT-IR. The reaction works up is facile and CaBNT catalyst can easily be separated from the reaction mixture and re-used more than five times in subsequent reactions. This methodology offers several advantages such as excellent yields, use of inexpensive solvent and relatively shorter reaction time.
Milind D. Deshpande; Subhash B. Kondawar
Abstract
In this paper, we report the influence of functionalized multi-walled carbon nanotubes (MWCNTs) on transport properties of conducting polymers polythiophene (PTH) and polyaniline (PANI). Nanocomposites based on multi-walled carbon nanotubes were synthesized by in-situ oxidative polymerization of thiophene/aniline ...
Read More
In this paper, we report the influence of functionalized multi-walled carbon nanotubes (MWCNTs) on transport properties of conducting polymers polythiophene (PTH) and polyaniline (PANI). Nanocomposites based on multi-walled carbon nanotubes were synthesized by in-situ oxidative polymerization of thiophene/aniline monomer in the presence of functionalized MWCNTs. These nanocomposites have been characterized by SEM, UV-VIS, FTIR, and XRD to study the effect of incorporation of MWCNTs on the morphology, structure and crystalline of the conducting polymers. Nanocomposites have shown high electrical conductivity compared to that of pure PTH/PANI. The enhancement in conductivity of the nanocomposites is due to the charge transfer effect from the quinoid rings of the PTH/PANI to the MWCNT. The effect of MWCNT on the transport properties of PTH and PANI was systematically studied and compared in terms of transport parameters. Charge localization length and most probable hopping distance were found to be decreased with wt % of CNT, whereas the charge hopping energy was found to be increased in nanocomposites. The improved transport properties of both the types of nanocomposites due to incorporation of CNT in conducting polymer matrix can be utilized for solar cells, capacitors, electronic devices as well as chemical sensors.
Utkarsh Jain; Jagriti Narang;Nidhi Chauhan
Abstract
Xanthine oxidase (XOD) was extracted from bovine milk. Immobilization of extracted XOD was performed by covalently N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry on core–shell magnetic nanoparticles (MNPs)/carboxylated multiwalled carbon nanotube ...
Read More
Xanthine oxidase (XOD) was extracted from bovine milk. Immobilization of extracted XOD was performed by covalently N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry on core–shell magnetic nanoparticles (MNPs)/carboxylated multiwalled carbon nanotube (c-MWCNT) composite film. The film was electrodeposited on glass plate electrode (usually the surface of fluorine doped tin oxide (FTO). In order to characterize nanocomposite modified FTO electrode, various methods including scanning electron microscopy (SEM), cyclic voltammetry (CV), Fourier transform infrared (FTIR), and electrochemical impedance spectroscopy (EIS) were performed. These methods were evaluated prior and following XOD immobilization. The working optimal conditions for instance 30 °C, +0.2 V vs. Ag/AgCl, sodium phosphate buffer at pH 7.0 were attributed for developing this biosensor. The linearity of the response upto 150 μM xanthine concentration, 0.05 μM (S/N = 3) detection limit and a response time within 3 s were obtained. The biosensor was stored at 4 °C and used above 100 times for a long period of 120 days. The loss of 50 % of activity was noticed. This fabricated biosensor was then employed determining xanthine in fish meat sample.
A. N. Upadhyay; R. S.Tiwari; Kedar Singh
Abstract
The electrical and dielectric properties of 3 and 5 wt. % of multi-walled carbon nanotube (MWCNT) containing Se85Te10Ag5 glassy composites have been investigated in the frequency range 20 Hz to 2 MHz from room temperature to 387 K. It has been found that the electrical conductivity is enhanced by 6 to ...
Read More
The electrical and dielectric properties of 3 and 5 wt. % of multi-walled carbon nanotube (MWCNT) containing Se85Te10Ag5 glassy composites have been investigated in the frequency range 20 Hz to 2 MHz from room temperature to 387 K. It has been found that the electrical conductivity is enhanced by 6 to 9 orders of magnitude up to 5 wt. % of MWCNT content resulting in transition for insulating to conducting behaviour. The activation energies for all samples have also been evaluated from the Arrhenius plot of the DC conductivity which shows a decreasing trend up to 5 wt. % MWCNT content. The largest dielectric constant of 142 (almost 10 times greater than pristine Se85Te10Ag5 glassy alloy) has been observed for 5 wt. % of MWCNT content at room temperature in low frequency range. Therefore it can be inferred that the electrical and dielectric properties of the chalcogenide glasses can be altered by the admixing or doping of carbon nanotubes (CNTs). The enhanced dielectric constant and electrical conductivity can be attributed to interface effect between MWCNT and the glassy matrix.
S. B. Kondawar; S. W. Anwane; D. V. Nandanwar; S. R. Dhakate
Abstract
Conducting polymer nanocomposites (PANI-CNT and POAS-CNT) have been synthesized by polymerization of aniline (ANI)/ o-anisidine (OAS) in the presence of functionalized multiwall carbon nanotubes (MWCNTs). These nanocomposites have been characterized by UV-VIS, FTIR and SEM to study the effect of incorporation ...
Read More
Conducting polymer nanocomposites (PANI-CNT and POAS-CNT) have been synthesized by polymerization of aniline (ANI)/ o-anisidine (OAS) in the presence of functionalized multiwall carbon nanotubes (MWCNTs). These nanocomposites have been characterized by UV-VIS, FTIR and SEM to study the effect of incorporation of MWCNTs on the morphology, structure and crystalline of the conducting polyaniline and its substitute derivate poly(o-anisidine). UV-VIS spectra shows that polaron-π* and π-π* transition bands of the PANI/POAS chain shifted to longer wavelengths, indicating the interaction between quinoid rings and MWCNTs. FTIR spectra shows that the interaction between the MWCNTs and PANI/POAS may result in ‘charge transfer’, whereby the sp2 carbons of the MWCNTs compete with dopant ions [Cl – ] and perturb the H-bond, resulting an increase in the N-H stretching intensity. Electron microscopy reveals that the interaction between the quinoid ring of PANI/POAS and the MWCNTs causes PANI and POAS polymer chains to be adsorbed at the surface of MWCNTs, thus forming a tubular core surrounding the MWCNTs. The nanocomposites showed high electrical conductivity compared to pure PANI/POAS. Further, PANI-CNT showed high electrical conductivity compared to that of POAS-CNT.