Grachev Vladimir; Gubin Sergey
Abstract
Russian graphene research centers are presented, in which the most significant results were obtained. The cities, scientific groups, their leaders, main research areas are listed: methods of synthesis and diagnostics of graphene and graphene-like structures, theoretical methods in the application to ...
Read More
Russian graphene research centers are presented, in which the most significant results were obtained. The cities, scientific groups, their leaders, main research areas are listed: methods of synthesis and diagnostics of graphene and graphene-like structures, theoretical methods in the application to graphene materials, devices based on graphene and related structures - sensors of physical characteristics, fuel cells, biosensors etc., the application of graphene and related 2D materials in electronics, photonics, spintronics, optoelectronics, bioelectronics. The large-scale production of graphene and graphene-like structures is also covered. The main sources of publications of Russian researches and their colleagues are also listed. Copyright © VBRI Press.

Peteris Lesnicenoks; Liga Grinberga; Laimonis Jekabsons; Andris Antuzevičš; Astrida Berzina; Maris Knite; Gatis Taurins; Šarūnas Varnagiris; Janis Kleperis
Abstract
Hydrogen storage is one of the main problems, to catalyse wide hydrogen use in transportation, technology and energetics. Composites involving nanostructured carbon species could be the solution for hydrogen storage problem because of their promising surface/volume relation. Not only catalysis and gas ...
Read More
Hydrogen storage is one of the main problems, to catalyse wide hydrogen use in transportation, technology and energetics. Composites involving nanostructured carbon species could be the solution for hydrogen storage problem because of their promising surface/volume relation. Not only catalysis and gas sensing on graphene basis should be considered, but also metal decorated graphene structures for use in hydrogen storage should be an active field for research and development. Heat conductivity and large surface area of graphene-like materials can endorse research for hydrogen storage in low pressures and close to room temperature (RT) conditions - increasing possibility for RT-range devices in hydrogen energetics. For increased hydrogen storage investigations, we propose metal intercalated graphene structures, acquired during synthesis of graphene sheets. Intercalation, or decoration of graphene surfaces and edges have shown possibility to stabilize defects in graphene sheets. Graphene defects have shown to be sensitive against hydrogen gas and might as well prove themselves stable enough to achieve low pressure hydrogen storage. A simple method is proposed for synthesis of graphene sheet stacks (GSS). There is lack of research for synthesis of carbon nanomaterials from industrial graphite waste. Our research for stabilization of electrolyte solution and increased production amounts for hydrogen accepting samples continues.